Triple-frequency radar retrieval of microphysical properties of snow

Author:

Mroz KamilORCID,Battaglia Alessandro,Nguyen Cuong,Heymsfield AndrewORCID,Protat AlainORCID,Wolde Mengistu

Abstract

Abstract. An algorithm based on triple-frequency (X, Ka, W) radar measurements that retrieves the size, water content and degree of riming of ice clouds is presented. This study exploits the potential of multi-frequency radar measurements to provide information on bulk snow density that should underpin better estimates of the snow characteristic size and content within the radar volume. The algorithm is based on Bayes' rule with riming parameterised by the “fill-in” model. The radar reflectivities are simulated with a range of scattering models corresponding to realistic snowflake shapes. The algorithm is tested on multi-frequency radar data collected during the ESA-funded Radar Snow Experiment For Future Precipitation Mission. During this campaign, in situ microphysical probes were mounted on the same aeroplane as the radars. This nearly perfectly co-located dataset of the remote and in situ measurements gives an opportunity to derive a combined multi-instrument estimate of snow microphysical properties that is used for a rigorous validation of the radar retrieval. Results suggest that the triple-frequency retrieval performs well in estimating ice water content (IWC) and mean mass-weighted diameters obtaining root-mean-square errors of 0.13 and 0.15, respectively, for log 10IWC and log 10Dm. The retrieval of the degree of riming is more challenging, and only the algorithm that uses Doppler information obtains results that are highly correlated with the in situ data.

Funder

National Centre for Earth Observation

European Space Agency

Idaho Operations Office, U.S. Department of Energy

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference41 articles.

1. Battaglia, A., Kollias, P., Dhillon, R., Roy, R., Tanelli, S., Lamer, K., Grecu, M., Lebsock, M., Watters, D., Mroz, K., Heymsfield, G., Li, L., and Furukawa, K.: Spaceborne Cloud and Precipitation Radars: Status, Challenges, and Ways Forward, Rev. Geophys., 58, e2019RG000686, https://doi.org/10.1029/2019RG000686, 2020a. a

2. Battaglia, A., Tanelli, S., Tridon, F., Kneifel, S., Leinonen, J., and Kollias, P.: Satellite Precipitation Measurement, Advances in Global Change Research, Vol. 67, Springer, Cham, ISBN: 978-3-030-24567-2, 2020b. a

3. Delene, D. and Poellot, M. R.: GPM GROUND VALIDATION UND CITATION CLOUD MICROPHYSICS MC3E, NASA Global Hydrology Resource Center DAAC [data set], Huntsville, Alabama, U.S.A., https://doi.org/10.5067/GPMGV/MC3E/MULTIPLE/DATA201, 2012. a

4. Ekelund, R., Eriksson, P., and Kahnert, M.: Microwave single-scattering properties of non-spheroidal raindrops, Atmos. Meas. Tech., 13, 6933–6944, https://doi.org/10.5194/amt-13-6933-2020, 2020a. a

5. Ekelund, R., Brath, M., Mendrok, J., and Eriksson, P.: ARTS Microwave Single Scattering Properties Database (1.1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.4646605, 2020b. a

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3