Assessment of real-time bioaerosol particle counters using reference chamber experiments

Author:

Lieberherr Gian,Auderset Kevin,Calpini Bertrand,Clot Bernard,Crouzy Benoît,Gysel-Beer MartinORCID,Konzelmann Thomas,Manzano JoséORCID,Mihajlovic Andrea,Moallemi Alireza,O'Connor David,Sikoparija BrankoORCID,Sauvageat Eric,Tummon FionaORCID,Vasilatou KonstantinaORCID

Abstract

Abstract. This study presents the first reference calibrations of three commercially available bioaerosol detectors. The Droplet Measurement Technologies WIBS-NEO (new version of the wideband integrated bioaerosol spectrometer), Plair Rapid-E, and Swisens Poleno were compared with a primary standard for particle number concentrations at the Federal Institute for Metrology (METAS). Polystyrene (PSL) spheres were used to assess absolute particle counts for diameters from 0.5 to 10 µm. For the three devices, counting efficiency was found to be strongly dependent on particle size. The results confirm the expected detection range for which the instruments were designed. While the WIBS-NEO achieves its highest efficiency with smaller particles, e.g. 90 % for 0.9 µm diameter, the Plair Rapid-E performs best for larger particles, with an efficiency of 58 % for particles with a diameter of 10 µm. The Swisens Poleno is also designed for larger particles but operates well from 2 µm. However, the exact counting efficiency of the Poleno could not be evaluated as the cut-off diameter range of the integrated concentrator unit was not completely covered. In further experiments, three different types of fluorescent particles were tested to investigate the fluorescent detection capabilities of the Plair Rapid-E and the Swisens Poleno. Both instruments showed good agreement with the reference data. While the challenge to produce known concentrations of larger particles above 10 µm or even fresh pollen particles remains, the approach presented in this paper provides a potential standardised validation method that can be used to assess counting efficiency and fluorescence measurements of automatic bioaerosol monitoring devices.

Funder

European Metrology Programme for Innovation and Research

Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja

Science Fund of the Republic of Serbia

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3