Diurnal variability of stratospheric column NO<sub>2</sub> measured using direct solar and lunar spectra over Table Mountain, California (34.38° N)

Author:

Li King-FaiORCID,Khoury Ryan,Pongetti Thomas J.,Sander Stanley P.,Mills Franklin P.ORCID,Yung Yuk L.

Abstract

Abstract. A full diurnal measurement of stratospheric column NO2 has been made over the Jet Propulsion Laboratory's Table Mountain Facility (TMF) located in the mountains above Los Angeles, California, USA (2.286 km above mean sea level, 34.38∘ N, 117.68∘ W). During a representative week in October 2018, a grating spectrometer measured the telluric NO2 absorptions in direct solar and lunar spectra. The stratospheric column NO2 is retrieved using a modified minimum-amount Langley extrapolation, which enables us to accurately treat the non-constant NO2 diurnal cycle abundance and the effects of tropospheric pollution near the measurement site. The measured 24 h cycle of stratospheric column NO2 on clean days agrees with a 1-D photochemical model calculation, including the monotonic changes during daytime and nighttime due to the exchange with the N2O5 reservoir and the abrupt changes at sunrise and sunset due to the activation or deactivation of the NO2 photodissociation. The observed daytime NO2 increasing rate is (1.34±0.24)×1014 cm−2 h−1. The observed NO2 in one of the afternoons during the measurement period was much higher than the model simulation, implying the influence of urban pollution from nearby counties. A 24 h back-trajectory analysis shows that the wind first came from inland in the northeast and reached southern Los Angeles before it turned northeast and finally arrived at TMF, allowing it to pick up pollutants from Riverside County, Orange County, and downtown Los Angeles.

Funder

National Aeronautics and Space Administration

American Geophysical Union

Academic Senate, University of California, Riverside

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3