Application of all-relevant feature selection for the failure analysis of parameter-induced simulation crashes in climate models
-
Published:2016-03-17
Issue:3
Volume:9
Page:1065-1072
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Paja Wiesław,Wrzesien Mariusz,Niemiec Rafał,Rudnicki Witold R.
Abstract
Abstract. Climate models are extremely complex pieces of software. They reflect the best knowledge on the physical components of the climate; nevertheless, they contain several parameters, which are too weakly constrained by observations, and can potentially lead to a simulation crashing. Recently a study by Lucas et al. (2013) has shown that machine learning methods can be used for predicting which combinations of parameters can lead to the simulation crashing and hence which processes described by these parameters need refined analyses. In the current study we reanalyse the data set used in this research using different methodology. We confirm the main conclusion of the original study concerning the suitability of machine learning for the prediction of crashes. We show that only three of the eight parameters indicated in the original study as relevant for prediction of the crash are indeed strongly relevant, three others are relevant but redundant and two are not relevant at all. We also show that the variance due to the split of data between training and validation sets has a large influence both on the accuracy of predictions and on the relative importance of variables; hence only a cross-validated approach can deliver a robust prediction of performance and relevance of variables.
Publisher
Copernicus GmbH
Reference23 articles.
1. Aagaard, K., Riehle, K., Ma, J., Segata, N., Mistretta, T.-A., Coarfa, C.,
Raza, S., Rosenbaum, S., den Veyver, I., Milosavljevic, A., Gevers, D.,
Huttenhower, C., Petrosino, J., and Versalovic, J.: A Metagenomic Approach to
Characterization of the Vaginal Microbiome Signature in Pregnancy, PLoS One,
7, e36466, https://doi.org/10.1371/journal.pone.0036466, 2012. 2. Ackerman, M. E., Crispin, M., Yu, X., Baruah, K., Boesch, A. W., Harvey, D.
J., Dugast, A. S., Heizen, E. L., Ercan, A., Choi, I., Streeck, H., Nigrovic,
P. A., Bailey-Kellogg, C., Scanlan, C., and Alter, G.: Natural variation in
Fc glycosylation of HIV-specific antibodies impacts antiviral activity, J.
Clin. Invest., 123, 2183–2192, 2013. 3. Boyle, J. S., Klein, S. A., Lucas, D. D., Ma, H. Y., Tannahill, J., and Xie,
S.: The parametric sensitivity of CAM5's MJO, J. Geophys. Res.-Atmos., 120,
1424–1444, 2015. 4. Breiman, L.: Random forests, Mach. Learn., 5–32,
https://doi.org/10.1023/A:1010933404324, 2001. 5. Buday, B., Pach, F. P., Literati-Nagy, B., Vitai, M., Vecsei, Z., and
Koranyi, L.: Serum osteocalcin is associated with improved metabolic state
via adiponectin in females versus testosterone in males. Gender specific
nature of the bone-energy homeostasis axis, Bone, 57, 98–104,
https://doi.org/10.1016/j.bone.2013.07.018, 2013.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|