Global clear-sky surface skin temperature from multiple satellites using a single-channel algorithm with angular anisotropy corrections

Author:

Scarino Benjamin R.,Minnis PatrickORCID,Chee Thad,Bedka Kristopher M.ORCID,Yost Christopher R.ORCID,Palikonda Rabindra

Abstract

Abstract. Surface skin temperature (Ts) is an important parameter for characterizing the energy exchange at the ground/water–atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared (TIR) method to retrieve Ts over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) and low Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of Ts over the diurnal cycle in non-polar regions, while polar Ts retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR), can complement the GEO measurements. The combined global coverage of remotely sensed Ts, along with accompanying cloud and surface radiation parameters, produced in near-realtime and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-realtime hourly Ts observations can be assimilated in high-temporal-resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived Ts data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing and illumination angles. Therefore, Ts validation with established references is essential, as is proper evaluation of Ts sensitivity to atmospheric correction source.This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based Ts product that is derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirically adjusted theoretical model of satellite land surface temperature (LST) angular anisotropy is tested to improve satellite LST retrievals. Application of the anisotropic correction yields reduced mean bias and improved precision of GOES-13 LST relative to independent Moderate-resolution Imaging Spectroradiometer (MYD11_L2) LST and Atmospheric Radiation Measurement Program ground station measurements. It also significantly reduces inter-satellite differences between LSTs retrieved simultaneously from two different imagers. The implementation of these universal corrections into the SatCORPS product can yield significant improvement in near-global-scale, near-realtime, satellite-based LST measurements. The immediate availability and broad coverage of these skin temperature observations should prove valuable to modelers and climate researchers looking for improved forecasts and better understanding of the global climate model.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference79 articles.

1. Bodas-Salcedo, A., Ringer, M., and Jones, A.: Evaluation of the surface radiation budget in the atmospheric component of the Hadley Centre Global Environmental Model (HadGEM1), J. Climate, 17, 4723–4748, 2008.

2. Bosilovich, M., Radakovich, J., Silva, A. D., Todling, R, and Verter, F.: Skin temperature analysis and bias correction in a coupled land-atmosphere data assimilation system, J. Meteorol. Soc. Jpn., 85, 205–228, 2007.

3. Chen, Y., Sun-Mack, S., Minnis, P., Young, D. F., and Smith Jr., W. L.: Seasonal surface spectral emissivity derived from Terra MODIS data, Proc. 13th AMS Conf. Satellite Oceanogr. and Meteorol., Norfolk, VA, 20–24 September, CD-ROM, P2.4, 2004.

4. Chen, Y., Minnis, P., Sun-Mack, S., Arduini, R. F., and Trepte, Q. Z.: Clear-sky and surface narrowband albedo datasets derived from MODIS data, Proc. AMS 13th Conf. Atmos. Rad. and Cloud Phys., Portland, OR, June 27–July 2, JP1.2., 2010.

5. Coll, C. and Caselles, V.: A split-window algorithm for land surface temperature from advanced very high resolution radiometer data: Validation and algorithm comparison, J. Geophys. Res., 102, 16697–16713, 1997.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Industrial Economic Trade Volume Based on Multi-prediction Model Algorithm;Lecture Notes on Data Engineering and Communications Technologies;2023

2. Land Surface Temperature from GOES-East and GOES-West;Journal of Atmospheric and Oceanic Technology;2021-04

3. Evaluating the Magnitude of VIIRS Out-of-Band Response for Varying Earth Spectra;Remote Sensing;2020-10-08

4. Estimation of Surface Soil Moisture Based on Improved Multi-index Models and Surface Energy Balance System;Natural Resources Research;2020-08-13

5. The Star Selecting and Distributing Algorithm of Beidou/Ground Pseudo-Satellite Integrated System;Proceedings of the 2019 7th International Conference on Computer and Communications Management;2019-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3