Intercomparison of total column ozone data from the Pandora spectrophotometer with Dobson, Brewer, and OMI measurements over Seoul, Korea
-
Published:2017-10-06
Issue:10
Volume:10
Page:3661-3676
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Kim Jiyoung, Kim JhoonORCID, Cho Hi-Ku, Herman JayORCID, Park Sang Seo, Lim Hyun Kwang, Kim Jae-Hwan, Miyagawa Koji, Lee Yun GonORCID
Abstract
Abstract. Daily total column ozone (TCO) measured using the Pandora spectrophotometer (no. 19) was compared with data from the Dobson (no. 124) and Brewer (no. 148) spectrophotometers, as well as from the Ozone Monitoring Instrument (OMI) (with two different algorithms, Total Ozone Mapping Spectrometer (TOMS) TOMS and differential optical absorption spectroscopy (DOAS) methods), over the 2-year period between March 2012 and March 2014 at Yonsei University, Seoul, Korea. Based on the linear-regression method, the TCO from Pandora is closely correlated with those from other instruments with regression coefficients (slopes) of 0.95 (Dobson), 1.00 (Brewer), 0.98 (OMI-TOMS), and 0.97 (OMI-DOAS), and determination coefficients (R2) of 0.95 (Dobson), 0.97 (Brewer), 0.96 (OMI-TOMS), and 0.95 (OMI-DOAS). The daily averaged TCO from Pandora has within 3 % differences compared to TCO values from other instruments. For the Dobson measurements in particular, the difference caused by the inconsistency in observation times when compared with the Pandora measurements was up to 12.5 % because of diurnal variations in the TCO values. However, the comparison with Brewer after matching the observation time shows agreement with large R2 and small biases. The TCO ratio between Brewer and Pandora shows the 0.98 ± 0.03, and the distributions for relative differences between two instruments are 89.2 and 57.1 % of the total data within the error ranges of 3 and 5 %, respectively. The TCO ratio between Brewer and Pandora also is partially dependent on solar zenith angle. The error dependence by the observation geometry is essential to the further analysis focusing on the sensitivity of aerosol and the stray-light effect in the instruments.
Funder
Korea Aerospace Research Institute
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference82 articles.
1. Antón, M., Lopez, M., Vilaplana, J. M., Kroon, M., McPeters, R., Banon, M., and Serrano, A.: Validation of OMI-TOMS and OMI-DOAS total ozone column using five Brewer spectroradiometers at the Iberian peninsula, J. Geophys. Res., 114, D14307, https://doi.org/10.1029/2009jd012003, 2009. 2. Angell, J. K.: On the Relation between atmospheric ozone and Sunspot number, J. Climate, 2, 1404–1416, 1989. 3. Appenzeller, C., Weiss, A. K., and Staehelin, J.: North Atlantic Oscillation modulates total ozone winter trends, Geophys. Res. Lett., 27, 1131–1134, https://doi.org/10.1029/1999GL010854, 2000. 4. Balis, D., Kroon, M., Koukouli, M. E., Brinksma, E. J., Labow, G., Veefkind, J. P., and McPeters, R. D.: Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations, J. Geophys. Res., 112, https://doi.org/10.1029/2007jd008796, 2007. 5. Basher, R. E.: Review of the dobson spectrophotometer and its accuracy, in: Atmospheric Ozone, edited by: Zerefos, C. S. and Ghazi, A., Reidel and Dordrect, 387 pp., 1985.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|