Automated quantification of floating wood pieces in rivers from video monitoring: a new software tool and validation

Author:

Ghaffarian HosseinORCID,Lemaire Pierre,Zhi Zhang,Tougne Laure,MacVicar Bruce,Piégay Hervé

Abstract

Abstract. Wood is an essential component of rivers and plays a significant role in ecology and morphology. It can be also considered a risk factor in rivers due to its influence on erosion and flooding. Quantifying and characterizing wood fluxes in rivers during floods would improve our understanding of the key processes but are hindered by technical challenges. Among various techniques for monitoring wood in rivers, streamside videography is a powerful approach to quantify different characteristics of wood in rivers, but past research has employed a manual approach that has many limitations. In this work, we introduce new software for the automatic detection of wood pieces in rivers. We apply different image analysis techniques such as static and dynamic masks, object tracking, and object characterization to minimize false positive and missed detections. To assess the software performance, results are compared with manual detections of wood from the same videos, which was a time-consuming process. Key parameters that affect detection are assessed, including surface reflections, lighting conditions, flow discharge, wood position relative to the camera, and the length of wood pieces. Preliminary results had a 36 % rate of false positive detection, primarily due to light reflection and water waves, but post-processing reduced this rate to 15 %. The missed detection rate was 71 % of piece numbers in the preliminary result, but post-processing reduced this error to only 6.5 % of piece numbers and 13.5 % of volume. The high precision of the software shows that it can be used to massively increase the quantity of wood flux data in rivers around the world, potentially in real time. The significant impact of post-processing indicates that it is necessary to train the software in various situations (location, time span, weather conditions) to ensure reliable results. Manual wood detections and annotations for this work took over 150 labor hours. In comparison, the presented software coupled with an appropriate post-processing step performed the same task in real time (55 h) on a standard desktop computer.

Funder

Université de Lyon

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3