Validation of MIPAS IMK/IAA methane profiles
Author:
Laeng A., Plieninger J.ORCID, von Clarmann T., Grabowski U., Stiller G.ORCID, Eckert E.ORCID, Glatthor N., Haenel F., Kellmann S., Kiefer M., Linden A., Lossow S.ORCID, Deaver L., Engel A.ORCID, Hervig M., Levin I.ORCID, McHugh M., Noël S., Toon G., Walker K.ORCID
Abstract
Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was an infra-red (IR) limb emission spectrometer on the Envisat platform. It measured during day and night, pole-to-pole, over an altitude range from 6 to 70 km in nominal mode and up to 170 km in special modes, depending on the measurement mode, producing more than 1000 profiles day−1. We present the results of a validation study of methane version V5R_CH4_222 retrieved with the IMK/IAA MIPAS scientific level 2 processor. The level 1 spectra are provided by ESA, the version 5 was used. The time period covered corresponds to the period when MIPAS measured at reduced spectral resolution, i.e. 2005–2012. The comparison with satellite instruments includes the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), the HALogen Occultation Experiment (HALOE), the Solar Occultation For Ice Experiment (SOFIE) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). Furthermore, comparisons with MkIV balloon-borne solar occultation measurements and with air sampling measurements performed by the University of Frankfurt are presented. The validation activities include bias determination, in selected cases, assessment of histograms and comparison of corresponding climatologies. Above 50 km altitude, MIPAS methane mixing ratios agree within 3% with ACE-FTS and SOFIE. Between 30 and 40 km an agreement within 3% with SCIAMACHY has been found. In the middle stratosphere, there is no clear indication of a MIPAS bias since comparisons with various instruments contradict each other. In the lower stratosphere (below about 25–30 km) MIPAS CH4 is biased high with respect to satellite instruments, and the most likely estimate of this bias is 14%. However, in the comparison with CH4 data obtained from cryosampler measurements, there is no evidence of a MIPAS high bias between 20 and 25 km altitude. Precision validation is performed on collocated MIPAS-MIPAS pairs and suggests a slight underestimation of its errors by a factor of 1.2. A parametric model consisting of constant, linear, QBO and several sine and cosine terms with different periods has been fitted to the temporal variation of differences of stratospheric CH4 measurements by MIPAS and ACE-FTS for all 10° latitude/1–2 km altitude bins. Only few significant drifts can be calculated, due to the lack of data. Significant drifts with respect to ACE-FTS tend to have higher absolute values in the Northern Hemisphere, have no pronounced tendency in the sign, and do not exceed 0.2 ppmv per decade in absolute value.
Publisher
Copernicus GmbH
Reference31 articles.
1. Boone, C. D., Walker, K. A., and Bernath, P. F.: Version 3 retrievals for the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), in: The Atmospheric Chemistry Experiment ACE at 10: A Solar Occultation Anthology, edited by: Bernath, P. F., A. Deepak Publishing, Hampton, Virginia, USA, 103–127, 2013. 2. Chauhan, S., Höpfner, M., Stiller, G. P., von Clarmann, T., Funke, B., Glatthor, N., Grabowski, U., Linden, A., Kellmann, S., Milz, M., Steck, T., Fischer, H., Froidevaux, L., Lambert, A., Santee, M. L., Schwartz, M., Read, W. G., and Livesey, N. J.: MIPAS reduced spectral resolution UTLS-1 mode measurements of temperature, O3, HNO3, N2O, H2O and relative humidity over ice: retrievals and comparison to MLS, Atmos. Meas. Tech., 2, 337–353, https://doi.org/10.5194/amt-2-337-2009, 2009. 3. Echle, G., von Clarmann, T., Dudhia, A., Flaud, J.-M., Funke, B., Glatthor, N., Kerridge, B., López-Puertas, M., Martín-Torres, F. J., and Stiller, G. P.: Optimized spectral microwindows for data analysis of the Michelson interferometer for passive atmospheric sounding on the environmental satellite, Appl. Optics, 39, 5531–5540, 2000. 4. Eckert, E., von Clarmann, T., Kiefer, M., Stiller, G. P., Lossow, S., Glatthor, N., Degenstein, D. A., Froidevaux, L., Godin-Beekmann, S., Leblanc, T., McDermid, S., Pastel, M., Steinbrecht, W., Swart, D. P. J., Walker, K. A., and Bernath, P. F.: Drift-corrected trends and periodic variations in MIPAS IMK/IAA ozone measurements, Atmos. Chem. Phys., 14, 2571–2589, https://doi.org/10.5194/acp-14-2571-2014, 2014. 5. Engel, A., Schmidt, U., and Stachnik, R. A.: Partitioning between chlorine reservoir species deduced from observations in the arctic winter stratosphere, J. Atmos. Chem., 27, 107–126, 1997.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|