Temporally resolved coastal hypoxia forecasting and uncertainty assessment via Bayesian mechanistic modeling

Author:

Katin Alexey,Del Giudice Dario,Obenour Daniel R.ORCID

Abstract

Abstract. Low bottom water dissolved oxygen conditions (hypoxia) occur almost every summer in the northern Gulf of Mexico due to a combination of nutrient loadings and water column stratification. Several statistical and mechanistic models have been used to forecast the midsummer hypoxic area, based on spring nitrogen loading from major rivers. However, sub-seasonal forecasts are needed to fully characterize the dynamics of hypoxia over the summer season, which is important for informing fisheries and ecosystem management. Here, we present an approach to forecasting hypoxic conditions at a daily resolution through Bayesian mechanistic modeling that allows for rigorous uncertainty quantification. Within this framework, we develop and test different representations and projections of hydrometeorological model inputs. We find that May precipitation over the Mississippi River basin is a key predictor of summer discharge and loading that substantially improves forecast performance. Accounting for spring wind conditions also improves forecast performance, though to a lesser extent. The proposed approach generates forecasts for two different sections of the Louisiana–Texas shelf (east and west), and it explains about 50 % of the variability in the total hypoxic area when tested against historical observations (1985–2016). Results also show how forecast uncertainties build over the summer season, with longer lead times from the nominal forecast release date of 1 June, due to increasing stochasticity in riverine and meteorological inputs. Consequently, the portion of overall forecast variance associated with uncertainties in data inputs increases from 26 % to 41 % from June–July to August–September, respectively. Overall, the study demonstrates a unique approach to assessing and reducing uncertainties in temporally resolved hypoxia forecasting.

Funder

National Oceanic and Atmospheric Administration

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3