Disentangling scatter in long-term concentration–discharge relationships: the role of event types
-
Published:2022-12-12
Issue:23
Volume:26
Page:6227-6245
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Saavedra Felipe A.ORCID, Musolff Andreas, von Freyberg JanaORCID, Merz RalfORCID, Basso StefanoORCID, Tarasova LarisaORCID
Abstract
Abstract. Relationships between nitrate concentrations and discharge rates (C–Q) at the catchment outlet can provide insights into sources, mobilization
and biogeochemical transformations of nitrate within the catchment. Nitrate C–Q relationships often exhibit considerable scatter that might be related to variable hydrologic conditions during runoff events at sampling time, corresponding to variable sources and flow paths despite similar discharge (Q) rates. Although previous studies investigated the origins of this scatter in individual or in a few catchments, the role of different runoff event types across a large set of catchments is not yet fully understood. This study combines a hydrological runoff event classification framework with low-frequency nitrate samples in 184 catchments to explore the role of
different runoff events in shaping long-term C–Q relationships and their variability across contrasting catchments. In most of the catchments, snow-impacted events produce positive deviations of concentrations, indicating an increased nitrate mobilization compared to the long-term pattern. In contrast, negative deviations occur mostly for rainfall-induced events with dry antecedent conditions, indicating the occurrence of lower nitrate concentrations (C) in river flows than their long-term pattern values during this type of event. Pronounced differences in event runoff coefficients among different event types indicate their contrasting levels of hydrologic connectivity that in turn might play a key role in controlling nitrate transport due to the activation of faster flow paths between sources and streams. Using long-term, low-frequency nitrate data, we demonstrate that runoff event types shape observed scatter in long-term C–Q relationships according to their level of hydrologic connectivity. In addition, we hypothesize that the level of biogeochemical attenuation of catchments can partially explain the spatial variability of the scatter during different event types.
Funder
Helmholtz-Zentrum für Umweltforschung
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference103 articles.
1. Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J., Naik, V., Palmer, M., Plattner, G. K., Rogelj, J., and Rojas, M.: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Technical Summary, https://www.ipcc.ch/report/ar6/wg1/ (last access: 8 December 2022), 2021. 2. Basu, N. B., Thompson, S. E., and Rao, P. S. C.:
Hydrologic and biogeochemical functioning of intensively managed catchments: A synthesis of top-down analyses, Water Resour. Res., 47, W00J15, https://doi.org/10.1029/2011WR010800, 2011. 3. Bauwe, A., Tiemeyer, B., Kahle, P., and Lennartz, B.:
Classifying hydrological events to quantify their impact on nitrate leaching across three spatial scales, J. Hydrol., 531, 589–601, https://doi.org/10.1016/j.jhydrol.2015.10.069, 2015. 4. Benettin, P., Fovet, O., and Li, L.:
Nitrate removal and young stream water fractions at the catchment scale, Hydrol. Process., 34, 2725–2738, https://doi.org/10.1002/hyp.13781, 2020. 5. Bieroza, M. Z., Heathwaite, A. L., Bechmann, M., Kyllmar, K., and Jordan, P.:
The concentration–discharge slope as a tool for water quality management, Sci. Total Environ., 630, 738–749, https://doi.org/10.1016/j.scitotenv.2018.02.256, 2018.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|