Storylines of UK drought based on the 2010–2012 event
-
Published:2022-04-06
Issue:7
Volume:26
Page:1755-1777
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Chan Wilson C. H.ORCID, Shepherd Theodore G., Facer-Childs KatieORCID, Darch Geoff, Arnell Nigel W.
Abstract
Abstract. Spatially extensive multi-year hydrological droughts cause significant environmental stress. The UK is expected to remain vulnerable to future multi-year droughts under climate change. Existing
approaches to quantify hydrological impacts of climate change often rely solely on global climate model (GCM) projections following different emission scenarios. This may
miss out low-probability events with significant impacts. As a means of exploring such events, physical climate storyline approaches aim to quantify physically coherent articulations of how observed events could hypothetically have unfolded in alternative ways. This study uses the 2010–2012 drought, the most recent period of severe hydrological drought in
the UK, as a basis and analyses storylines based on changes to (1) precondition severity, (2) temporal drought sequence, and (3) climate change. Evidence from multiple storylines shows that the maximum intensity, mean deficit, and duration of the 2010–2012 drought were highly influenced by its meteorological preconditions prior to drought inception, particularly for
northern catchments at shorter timescales. The influence of progressively drier preconditions reflects both the spatial variation in drought preconditions and the role of physical catchment characteristics, particularly hydrogeology in the propagation of multi-year droughts. There are two plausible storylines of an additional dry year with dry winter conditions repeated either before the observed drought or replacing the observed dramatic drought termination confirm the vulnerability of UK catchments to a “third dry winter” storyline. Applying the UKCP18 climate projections, we find that drought conditions worsen with global warming with a mitigation of drought conditions by wetter winters in northern catchments at high warming levels. Comparison of the storylines with a benchmark drought (1975–1976) and a protracted multi-year drought (1989–1993) shows that, for each storyline (including the climate change storylines), drought conditions could have
matched and exceeded those experienced during the past droughts at catchments across the UK, particularly for southern catchments. The construction of storylines based on observed events can complement existing methods to stress test UK catchments against plausible unrealised droughts.
Funder
Natural Environment Research Council
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference99 articles.
1. Anandhi, A., Frei, A., Pierson, D. C., Schneiderman, E. M., Zion, M. S.,
Lounsbury, D., and Matonse, A. H.: Examination of change factor methodologies
for climate change impact assessment, Water Resour. Res., 47, W03501,
https://doi.org/10.1029/2010WR009104, 2011. 2. Arnell, N. W.: Relative effects of multi-decadal climatic variability and changes in the mean and variability of climate due to global warming: future streamflows in Britain, J. Hydrol., 270, 195–213, https://doi.org/10.1016/S0022-1694(02)00288-3, 2003. 3. Arnell, N. W.: Uncertainty in the relationship between climate forcing and hydrological response in UK catchments, Hydrol. Earth Syst. Sci., 15, 897–912, https://doi.org/10.5194/hess-15-897-2011, 2011. 4. Arnell, N. W., Kay, A. L., Freeman, A., Rudd, A. C., and Lowe, J. A.: Changing
climate risk in the UK: a multi-sectoral analysis using policy-relevant
indicators, Climate Risk Management, 31, 100265, https://doi.org/10.1016/j.crm.2020.100265, 2021. 5. Ault, T. R., Cole, J. E., Overpeck, J. T., Pederson, G. T., and Meko, D. M.:
Assessing the Risk of Persistent Drought Using Climate Model Simulations and
Paleoclimate Data, J. Climate, 27, 7529–7549,
https://doi.org/10.1175/JCLI-D-12-00282.1, 2014.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|