Regionalization of hydrological model parameters using gradient boosting machine
-
Published:2022-01-31
Issue:2
Volume:26
Page:505-524
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Song Zhihong,Xia Jun,Wang Gangsheng,She Dunxian,Hu Chen,Hong Si
Abstract
Abstract. The regionalization of hydrological model parameters is key to hydrological predictions in ungauged basins. The commonly used multiple linear regression (MLR) method may not be applicable in complex and nonlinear relationships between model parameters and watershed properties. Moreover, most regionalization methods assume lumped parameters for each catchment without considering within-catchment heterogeneity. Here we incorporated the Penman–Monteith–Leuning (PML) equation into the Distributed Time Variant Gain Model (DTVGM) to improve the mechanistic representation of the evapotranspiration (ET) process. We calibrated six key model parameters, grid by grid across China, using a multivariable calibration strategy which incorporates spatiotemporal runoff and ET datasets (0.25∘; monthly) as reference. In addition, we used the gradient boosting machine (GBM), a machine learning technique, to portray the dependence of model parameters on soil and terrain attributes in four distinct climatic zones across China. We show that the modified DTVGM could reasonably estimate the runoff and ET over China using the calibrated parameters but performed better in humid rather than arid regions for the validation period. The regionalized parameters by the GBM method exhibited better spatial coherence relative to the calibrated grid-by-grid parameters. In addition, GBM outperformed the stepwise MLR method in both parameter regionalization and gridded runoff simulations at a national scale, though the improvement pertaining to watershed streamflow validation is not significant due to most of the watersheds being located in humid regions. We also revealed that the slope, saturated soil moisture content, and elevation are the most important explanatory variables to inform model parameters based on the GBM approach. The machine-learning-based regionalization approach provides an effective alternative to deriving hydrological model parameters from watershed properties, particularly in ungauged regions.
Funder
National Key Research and Development Program of China National Natural Science Foundation of China
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference131 articles.
1. Adnan, R. M., Liang, Z., Trajkovic, S., Zounemat-Kermani, M., Li, B., and
Kisi, O.: Daily streamflow prediction using optimally pruned extreme learning machine, J. Hydrol., 577, 123981, https://doi.org/10.1016/j.jhydrol.2019.123981, 2019. 2. Akbarimehr, M. and Naghdi, R.: Assessing the relationship of slope and runoff volume on skid trails (Case study: Nav 3 district), J. Forest Sci., 58, 357–362, https://doi.org/10.17221/26/2012-JFS, 2012. 3. Bai, P., Liu, X., Zhang, Y., and Liu, C.: Incorporating vegetation dynamics
noticeably improved performance of hydrological model under vegetation greening, Sci. Total Environ., 643, 610–622, https://doi.org/10.1016/j.scitotenv.2018.06.233, 2018a. 4. Bai, P., Liu, X., and Liu, C.: Improving hydrological simulations by
incorporating GRACE data for model calibration, J. Hydrol., 557, 291–304,
https://doi.org/10.1016/j.jhydrol.2017.12.025, 2018b. 5. Bao, Z., Zhang, J., Liu, J., Fu, G., Wang, G., He, R., Yan, X., Jin, J., and
Liu, H.: Comparison of regionalization approaches based on regression and
similarity for predictions in ungauged catchments under multiple hydro-climatic conditions, J. Hydrol., 466–467, 37–46,
https://doi.org/10.1016/j.jhydrol.2012.07.048, 2012.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|