Evaporation from a large lowland reservoir – observed dynamics and drivers during a warm summer

Author:

Jansen Femke A.,Uijlenhoet RemkoORCID,Jacobs Cor M. J.ORCID,Teuling Adriaan J.ORCID

Abstract

Abstract. We study the controls on open water evaporation of a large lowland reservoir in the Netherlands. To this end, we analyse the dynamics of open water evaporation at two locations, Stavoren and Trintelhaven, at the border of Lake IJssel (1100 km2); eddy covariance systems were installed at these locations during the summer seasons of 2019 and 2020. These measurements were used to develop data-driven models for both locations. Such a statistical model is a clean and simple approach that can provide a direct indication of (and insight into) the most relevant input parameters involved in explaining the variance in open water evaporation, without making a priori assumptions regarding the process itself. We found that a combination of wind speed and the vertical vapour pressure gradient can explain most of the variability in observed hourly open water evaporation. This is in agreement with Dalton’s model, which is a well-established model often used in oceanographic studies for calculating open water evaporation. Validation of the data-driven models demonstrates that a simple model using only two variables yields satisfactory results at Stavoren, with R2 values of 0.84 and 0.78 for hourly and daily data respectively. However, the validation results for Trintelhaven fall short, with R2 values of 0.67 and 0.65 for hourly and daily data respectively. Validation of the simple models that only use routinely measured meteorological variables shows adequate performance at hourly (R2=0.78 at Stavoren and R2=0.51 at Trintelhaven) and daily (R2=0.82 at Stavoren and R2=0.87 at Trintelhaven) timescales. These results for the summer periods show that open water evaporation is not directly coupled to global radiation at the hourly or daily timescale. Rather a combination of wind speed and vertical gradient of vapour pressure is the main driver at these timescales. We would like to stress the importance of including the correct drivers of open water evaporation in the parametrization in hydrological models in order to adequately represent the role of evaporation in the surface–atmosphere coupling of inland waterbodies.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference89 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3