Simultaneous assimilation of water levels from river gauges and satellite flood maps for near-real-time flood mapping

Author:

Annis AntonioORCID,Nardi FernandoORCID,Castelli FabioORCID

Abstract

Abstract. Hydro-meteo hazard early warning systems (EWSs) are operating in many regions of the world to mitigate nuisance effects of floods. EWS performances are majorly impacted by the computational burden and complexity affecting flood prediction tools, especially for ungauged catchments that lack adequate river flow gauging stations. Earth observation (EO) systems may integrate the lack of fluvial monitoring systems supporting the setting up of affordable EWSs. But, EO data, constrained by spatial and temporal resolution limitations, are not sufficient alone, especially at medium–small scales. Multiple sources of distributed flood observations need to be used for managing uncertainties of flood models, but this is not a trivial task for EWSs. In this work, a near-real-time flood modelling approach is developed and tested for the simultaneous assimilation of both water level observations and EO-derived flood extents. An integrated physically based flood wave generation and propagation modelling approach, that implements an ensemble Kalman filter, a parsimonious geomorphic rainfall–runoff algorithm (width function instantaneous unit hydrograph, WFIUH) and a quasi-2D hydraulic algorithm, is proposed. An approach for assimilating multiple stage gauge observations is proposed to overcome stability issues related to the updating of the quasi-2D hydraulic model states. Furthermore, a methodology to retrieve distributed observed water depths from satellite images to update 2D hydraulic modelling state variables is implemented. Performances of the proposed approach are tested on a flood event for the Tiber River basin in central Italy. The selected case study shows varying performances depending on whether local and distributed observations are separately or simultaneously assimilated. Results suggest that the injection of multiple data sources into a flexible data assimilation framework constitutes an effective and viable advancement for flood mitigation to tackle EWS uncertainty and numerical stability issues. Specifically, our findings reveal that the simultaneous assimilation of observations from static sensors and satellite images led to an overall improvement of the Nash–Sutcliffe efficiency (NSE) between 5 % and 40 %, the Pearson correlation up to 12 % and bias reduction up to 80 % with respect to the open-loop simulation. Moreover, this combined assimilation allows us to reduce the flood extent uncertainty with respect to the disjoint assimilation simulations for several hours after the satellite image acquisition.

Funder

Ministero dell'Ambiente e della Tutela del Territorio e del Mare

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3