Precipitation fate and transport in a Mediterranean catchment through models calibrated on plant and stream water isotope data

Author:

Sprenger MatthiasORCID,Llorens PilarORCID,Gallart FrancescORCID,Benettin PaoloORCID,Allen Scott T.ORCID,Latron JérômeORCID

Abstract

Abstract. To predict hydrologic responses to inputs and perturbations, it is important to understand how precipitation is stored in catchments, released back to the atmosphere via evapotranspiration (ET), or transported to aquifers and streams. We investigated this partitioning of precipitation using stable isotopes of water (18O) at the Can Vila catchment in the Spanish Pyrenees mountains. The isotope data covered four years of measurements, comprising >550 rainfall and >980 stream water samples, capturing intra-event variations. They were complemented by fortnightly plant water isotope data sampled over eight months. The isotope data were used to quantify how long it takes for water to become evapotranspiration or to be discharged as streamflow using StorAge Selection (SAS) functions. We calibrated the SAS functions using a conventional approach fitting the model solely to stream water isotope data and a multi-objective calibration approach in which the model was simultaneously fitted to tree xylem water isotope data. Our results showed that the conventional model-fitting approach was not able to constrain the model parameters that represented the age of water supplying ET. Consequently, the ET isotope ratios simulated by the conventionally calibrated model failed to adequately simulate the observed xylem isotope ratios. However, the SAS model was capable of adequately simulating both observed stream water and xylem water isotope ratios, if those xylem water isotope observations were used in calibration (i.e., the multi-objective approach). The multi-objective calibration approach led to a more constrained parameter space facilitating parameter value identification. The model was tested on a segment of data reserved for validation showing a Kling–Gupta Efficiency of 0.72 compared to the 0.83 observed during in the calibration period. The water-age dynamics inferred from the model calibrated using the conventional approach differed substantially from those inferred from the multi-objective calibration model. The latter suggested that the median ages of water supplying evapotranspiration is much older (150–300 d) than what was suggested by the former (50–200 d). Regardless, the modeling results support recent findings in ecohydrological field studies that highlighted both subsurface heterogeneity of water storage and fluxes and the use of relatively old water by trees. We contextualized the SAS-derived water ages by also using young-water-fraction and endmember-splitting approaches, which respectively also showed the contribution of young water to streamflow was variable but sensitive to runoff rates and that ET was largely sourced by winter precipitation that must have resided in the subsurface across seasons.

Funder

Deutsche Forschungsgemeinschaft

Ministerio de Ciencia e Innovación

Agència de Gestió d'Ajuts Universitaris i de Recerca

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3