Inter- and intra-event rainfall partitioning dynamics of two typical xerophytic shrubs in the Loess Plateau of China

Author:

An Jinxia,Gao Guangyao,Yuan ChuanORCID,Pinos Juan,Fu Bojie

Abstract

Abstract. Rainfall is known as the main water replenishment in dryland ecosystems, and rainfall partitioning by vegetation reshapes the spatial and temporal distribution patterns of rainwater entry into the soil. The dynamics of rainfall partitioning have been extensively studied at the inter-event scale, yet very few studies have explored its finer intra-event dynamics and the relating driving factors for shrubs. Here, we conducted a concurrent in-depth investigation of all rainfall partitioning components at inter- and intra-event scales for two typical xerophytic shrubs (Caragana korshinskii and Salix psammophila) in the Liudaogou catchment of the Loess Plateau, China. The event throughfall (TF), stemflow (SF), and interception loss (IC), and their temporal variations within the rainfall event, as well as the meteorological factors and vegetation characteristics, were systematically measured during the 2014–2015 rainy seasons. Our results showed that C. korshinskii had significantly higher SF percentage (9.2 %) and lower IC percentage (21.4 %) compared to S. psammophila (3.8 % and 29.5 %, respectively), but their TF percentages were not significantly different (69.4 % vs. 66.7 %). At the intra-event scale, TF and SF of S. psammophila were initiated (0.1 vs. 0.3 h and 0.7 vs. 0.8 h) and peaked (1.8 vs. 2.0 h and 2.1 vs. 2.2 h) more quickly, and TF of S. psammophila lasted longer (5.2 vs. 4.8 h) and delivered more intensely (4.3 vs. 3.8 mm h−1), whereas SF of C. korshinskii lasted longer (4.6 vs. 4.1 h) and delivered more intensely (753.8 vs. 471.2 mm h−1). For both shrubs, rainfall amount was the most significant factor influencing inter-event rainfall partitioning, and rainfall intensity and duration controlled the intra-event TF and SF variables. The C. korshinskii with larger branch angle, more small branches, and smaller canopy area, has an advantage over S. psammophila to produce SF more efficiently. The S. psammophila has lower canopy water storage capacity to generate and peak TF and SF earlier, and it has larger aboveground biomass and total canopy water storage of individual plants to produce higher IC compared to C. korshinskii. These findings contribute to the fine characterization of shrub-dominated ecohydrological processes, and improve the accuracy of water balance estimation in dryland ecosystems.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3