Multi-scale temporal analysis of evaporation on a saline lake in the Atacama Desert

Author:

Lobos-Roco FelipeORCID,Hartogensis OscarORCID,Suárez FranciscoORCID,Huerta-Viso Ariadna,Benedict ImmeORCID,de la Fuente Alberto,Vilà-Guerau de Arellano JordiORCID

Abstract

Abstract. We investigate how evaporation changes depending on the scales in the Altiplano region of the Atacama Desert. More specifically, we focus on the temporal evolution from the climatological to the sub-diurnal scales on a high-altitude saline lake ecosystem. We analyze the evaporation trends over 70 years (1950–2020) at a high-spatial resolution. The method is based on the downscaling of 30 km ERA5 reanalysis data at hourly resolution to 0.1 km spatial resolution data, using artificial neural networks to analyze the main drivers of evaporation. To this end, we use the Penman open-water evaporation equation, modified to compensate for the energy balance non-closure and the ice cover formation on the lake during the night. Our estimation of the hourly climatology of evaporation shows a consistent agreement with eddy-covariance (EC) measurements and reveals that evaporation is controlled by different drivers depending on the time scale. At the sub-diurnal scale, mechanical turbulence is the primary driver of evaporation, and at this scale, it is not radiation-limited. At the seasonal scale, more than 70 % of the evaporation variability is explained by the radiative contribution term. At the same scale, and using a large-scale moisture tracking model, we identify the main sources of moisture to the Chilean Altiplano. In all cases, our regime of precipitation is controlled by large-scale weather patterns closely linked to climatological fluctuations. Moreover, seasonal evaporation significantly influences the saline lake surface spatial changes. From an interannual scale perspective, evaporation increased by 2.1 mm yr−1 during the entire study period, according to global temperature increases. Finally, we find that yearly evaporation depends on the El Niño–Southern Oscillation (ENSO), where warm and cool ENSO phases are associated with higher evaporation and precipitation rates, respectively. Our results show that warm ENSO phases increase evaporation rates by 15 %, whereas cold phases decrease it by 2 %.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3