Evidence for high-elevation salar recharge and interbasin groundwater flow in the Western Cordillera of the Peruvian Andes

Author:

Alvarez-Campos Odiney,Olson Elizabeth J.,Welp Lisa R.ORCID,Frisbee Marty D.ORCID,Zuñiga Medina Sebastián A.,Díaz Rodríguez José,Roque Quispe Wendy R.,Salazar Mamani Carol I.,Arenas Carrión Midhuar R.,Jara Juan Manuel,Ccanccapa-Cartagena Alexander,Jafvert Chad T.

Abstract

Abstract. Improving our understanding of hydrogeological processes on the western flank of the central Andes is critical to communities living in this arid region. Groundwater emerging as springs at low elevations provides water for drinking, agriculture, and baseflow. However, the high-elevation sources of recharge and groundwater flow paths that convey groundwater to lower elevations where the springs emerge remain poorly quantified in the volcanic mountain terrain of southern Peru. In this study, we identified recharge zones and groundwater flow paths supporting springs east of the city of Arequipa and the potential for recharge within the high-elevation closed-basin Lagunas Salinas salar. We used general chemistry and isotopic tracers (δ18O, δ2H, and 3H) in springs, surface waters (rivers and the salar), and precipitation (rain and snow) sampled from March 2019 through February 2020 to investigate these processes. We obtained monthly samples from six springs, bimonthly samples from four rivers, and various samples from high-elevation springs during the dry season. The monthly isotopic composition of spring water was invariable seasonally in this study and compared to published values from a decade prior, suggesting that the source of recharge and groundwater flow paths that support spring flow is relatively stable with time. The chemistry of springs in the low-elevations and mid-elevations (2500 to 2900 m a.s.l.) point towards a mix of recharge from the salar basin (4300 m a.s.l.) and mountain-block recharge (MBR) in or above a queñuales forest ecosystem at ∼4000 m a.s.l. on the adjacent Pichu Pichu volcano. Springs that clustered along the Río Andamayo, including those at 2900 m a.s.l., had higher chloride concentrations, indicating higher proportions of interbasin groundwater flow from the salar basin likely facilitated by a high degree of faulting along the Río Andamayo valley compared to springs further away from that fault network. A separate groundwater flow path was identified by higher sulfate concentrations (and lower Cl-/SO4-2 ratios) within the Pichu Pichu volcanic mountain range separating the city from the salar. We conclude that the salar basin is not a hydrologic dead end. Instead, it is a local topographic low where surface runoff during the wet season, groundwater from springs, and subsurface groundwater flow paths from the surrounding mountains converge in the basin, and some mixture of this water supports groundwater flow out of the salar basin via interbasin groundwater flow. In this arid location, high-elevation forests and the closed-basin salar are important sources of recharge supporting low-elevation springs. These features should be carefully managed to prevent impacts on the down-valley water quality and quantity.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference80 articles.

1. Ajami, H., Troch, P. A., Maddock III, T., Meixner, T., and Eastoe, C.: Quantifying mountain block recharge by means of catchment-scale storage-discharge relationships, Water Resour. Res., 47, W04504, https://doi.org/10.1029/2010WR009598, 2011.

2. Aravena, R., Suzuki, O., Peña, H., Pollastri, A., Fuenzalida, H., and Grilli, A.: Isotopic composition and origin of the precipitation in Northern Chile, Appl. Geochem., 14, 411–422, https://doi.org/10.1016/S0883-2927(98)00067-5, 1999.

3. Albero, M. C. and Panarello, H. O.: Tritium and stable isotopes in precipitation water in South America, Interamerican Symposium on Isotope Hydrology, Bogotá, Colombia, 18–22 August 1981, 91–109, 1981.

4. Alvarez Campos, O., Olson, E., Welp, L. R., and Frisbee, M. D.: Groundwater chemistry within Arequipa, Peru in the Characato, Chiguata, and Lagunas Salinas study areas, Purdue University Research Repository [data set], https://doi.org/10.4231/PJRM-Q992, 2021.

5. Benavente, C., Delgado, G., García, B., Aguirre, E., and Audin, L.: Neotectónica: evolución del relieve y peligro sísmico en la región Arequipa, INGEMMET, Boletín, Serie C: Geodinámica e Ingeniería Geológica, 64, 370 pp., 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3