Abstract
Abstract. Spatially explicit quantification on design storms is essential
for flood risk assessment and planning. Due to the limited temporal data
availability from weather radar data, design storms are usually estimated on the basis of rainfall records of a few precipitation stations only that have a substantially long time coverage. To achieve a regional picture, these station-based estimates are spatially interpolated, incorporating a large source of uncertainty due to the typical low station density, in particular for short event durations. In this study we present a method to estimate spatially explicit design
storms with a return period of up to 100 years on the basis of statistically extended weather radar precipitation estimates, based on the ideas of regional frequency analyses and subsequent bias correction. Associated uncertainties are quantified using an ensemble-sampling approach and event-based bootstrapping. With the resulting dataset, we compile spatially explicit design storms for
various return periods and event durations for the federal state of Baden
Württemberg, Germany. We compare our findings with two reference
datasets based on interpolated station estimates. We find that the
transition in the spatial patterns of the design storms from a rather random (short-duration events, 15 min) to a more structured, orographically influenced pattern (long-duration events, 24 h) seems to be much more realistic in the weather-radar-based product. However, the absolute magnitude of the design storms, although bias-corrected, is still generally lower in the weather radar product, which should be addressed in future studies in more detail.
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference39 articles.
1. Burn, D. H.: Evaluation of regional flood frequency analysis with a region of influence approach, Water Resour. Res., 26, 2257–2265, 1990.
2. Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes?, J. Climate, 28, 6938–6959, 2015.
3. Charras-Garrido, M. and Lezaud, P.: Extreme value analysis: an introduction, Journal de la Société Française de Statistique, 154, 66–97, 2013.
4. Cheng, L., AghaKouchak, A., Gilleland, E., and Katz, R. W.: Non-stationary extreme value analysis in a changing climate, Climatic Change, 127, 353–369, 2014.
5. de Zea Bermudez, P. and Kotz, S.: Parameter estimation of the generalized Pareto distribution – Part I, J. Stat. Plan. Infer., 140, 1353–1373, 2010.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献