A comparative study of plant water extraction methods for isotopic analyses: Scholander-type pressure chamber vs. cryogenic vacuum distillation
-
Published:2022-07-14
Issue:13
Volume:26
Page:3673-3689
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Zuecco GiuliaORCID, Amin AnamORCID, Frentress JayORCID, Engel Michael, Marchina Chiara, Anfodillo Tommaso, Borga Marco, Carraro Vinicio, Scandellari FrancescaORCID, Tagliavini Massimo, Zanotelli DamianoORCID, Comiti Francesco, Penna DanieleORCID
Abstract
Abstract. Recent tracer-based studies using stable isotopes of hydrogen and oxygen showed that different methods for extracting water from plant tissues can return different isotopic compositions due to the presence of organic compounds and because they extract different plant water domains. One of the most used methods to extract plant water is the cryogenic vacuum distillation (CVD), which tends to extract total plant water. Conversely, the Scholander-type pressure chamber (SPC), which is commonly used by tree physiologists to measure water potential in plant tissues and determine plant water stress, is expected to extract only the more mobile plant water (i.e., xylem and inter-cellular water). However, only few studies reported the application of SPC to extract plant water for isotopic analyses, and therefore, inter-method comparisons between SPC and CVD are of great value. In this work, we analyzed the variability in the isotopic composition of plant water extracted by SPC and CVD, also considering the potential variability in the isotopic signature of the plant water extracted by CVD from various tissues (i.e., leaves, twig without bark, twig with bark, twig close to the trunk of the tree, and wood core) and from different plant species (i.e., alder, apple, chestnut, and beech). The extraction of plant water by SPC is simple, can be carried out in the field, and it does not require specific laboratory work as in the case of CVD. However, the main limitation of SPC is the very small water volume that can be extracted from the lignified twigs under water stress conditions compared to CVD. Our results indicated that plant water extracted by SPC and CVD were significantly different. The difference in the isotopic composition obtained by the two extraction methods was smaller in the beech samples compared to alder, apple, and chestnut samples. The isotopic signature of alder, apple, and chestnut plant water extracted by SPC was more enriched in δ2H and δ18O, respectively, than the samples obtained by CVD. We conclude that plant water extraction by SPC is not an alternative for CVD as SPC mostly extracts the mobile plant water, whereas CVD tends to retrieve all water stored in the sampled tissue from both living and dead cells. However, studies aiming to quantify the relative contribution of the soil water sources to transpiration should rely more on the isotopic composition of xylem water (which is theoretically sampled by SPC) than the isotopic composition of total plant water (sampled by CVD), which also contains a fraction of water that could be stored in plant tissues for a longer time.
Funder
Libera Università di Bolzano Fondazione Cassa di Risparmio di Padova e Rovigo
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference71 articles.
1. Aguzzoni, A., Engel, M., Zanotelli, D., Penna, D., Comiti, F., and Tagliavini, M.: Water uptake dynamics in apple trees assessed by an isotope labeling approach, Agr. Water Manage., 266, 107572, https://doi.org/10.1016/j.agwat.2022.107572, 2022. a 2. Allen, S. T. and Kirchner, J. W.: Potential effects of cryogenic extraction biases on plant water source partitioning inferred from xylem-water isotope ratios, Hydrol. Process., 36, e14483, https://doi.org/10.1002/hyp.14483, 2022. a, b, c, d 3. Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R. T. W., and Goldsmith, G. R.: Seasonal origins of soil water used by trees, Hydrol. Earth Syst. Sci., 23, 1199–1210, https://doi.org/10.5194/hess-23-1199-2019, 2019. a 4. Amin, A., Zuecco, G., Geris, J., Schwendenmann, L., McDonnell, J. J., Borga, M., and Penna, D.: Depth distribution of soil water sourced by plants at the global scale: a new direct inference approach, Ecohydrology, 13, e2177, https://doi.org/10.1002/eco.2177, 2020. a 5. Amin, A., Zuecco, G., Marchina, C., Engel, M., Penna, D., McDonnell, J. J., and Borga M.: No evidence of isotopic fractionation in olive trees (Olea europaea): a stable isotope tracing experiment, Hydrolog. Sci. J., 66, 2415–2430, https://doi.org/10.1080/02626667.2021.1987440, 2021. a
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|