Drought impact links to meteorological drought indicators and predictability in Spain

Author:

Torelló-Sentelles Herminia,Franzke Christian L. E.ORCID

Abstract

Abstract. Drought affects many regions worldwide, and future climate projections imply that drought severity and frequency will increase. Hence, the impacts of drought on the environment and society will also increase considerably. Monitoring and early warning systems for drought rely on several indicators; however, assessments of how these indicators are linked to impacts are still lacking. Here, we explore the links between different drought indicators and drought impacts within six sub-regions in Spain. We used impact data from the European Drought Impact Report Inventory database and provide a new case study to evaluate these links. We provide evidence that a region with a small sample size of impact data can still provide useful insights regarding indicator–impact links. As meteorological drought indicators, we use the Standardised Precipitation Index and the Standardised Precipitation Evapotranspiration Index; as agricultural and hydrological drought indicators, we use a Standardised Soil Water Content Index and a Standardised Streamflow Index and a Standardised Reservoir Storage Index. We also explore the links between drought impacts and teleconnection patterns and surface temperature by conducting a correlation analysis, and then we test the predictability of drought impacts using a random forest model. Our results show that meteorological indices are best linked to impact occurrences overall and at long timescales between 15 and 33 months. However, we also find robust links for agricultural and hydrological drought indices, depending on the sub-region. The Arctic Oscillation, Western Mediterranean Oscillation, and the North Atlantic Oscillation at long accumulation periods (15 to 48 months) are top predictors of impacts in the northwestern and northeastern regions, the community of Madrid, and the southern regions of Spain, respectively. We also find links between temperature and drought impacts. The random forest model produces skilful models for most sub-regions. When assessed using a cross-validation analysis, the models in all regions show precision, recall, or R2 values higher than 0.97, 0.62, and 0.68, respectively. Thus, our random forest models are skilful in predicting drought impacts and could potentially be used as part of an early warning system.

Funder

Institute for Basic Science

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3