Forward and inverse modeling of water flow in unsaturated soils with discontinuous hydraulic conductivities using physics-informed neural networks with domain decomposition

Author:

Bandai ToshiyukiORCID,Ghezzehei Teamrat A.ORCID

Abstract

Abstract. Modeling water flow in unsaturated soils is vital for describing various hydrological and ecological phenomena. Soil water dynamics is described by well-established physical laws (Richardson–Richards equation – RRE). Solving the RRE is difficult due to the inherent nonlinearity of the processes, and various numerical methods have been proposed to solve the issue. However, applying the methods to practical situations is very challenging because they require well-defined initial and boundary conditions. Recent advances in machine learning and the growing availability of soil moisture data provide new opportunities for addressing the lingering challenges. Specifically, physics-informed machine learning allows both the known physics and data-driven modeling to be taken advantage of. Here, we present a physics-informed neural network (PINN) method that approximates the solution to the RRE using neural networks while concurrently matching available soil moisture data. Although the ability of PINNs to solve partial differential equations, including the RRE, has been demonstrated previously, its potential applications and limitations are not fully known. This study conducted a comprehensive analysis of PINNs and carefully tested the accuracy of the solutions by comparing them with analytical solutions and accepted traditional numerical solutions. We demonstrated that the solutions by PINNs with adaptive activation functions are comparable with those by traditional methods. Furthermore, while a single neural network (NN) is adequate to represent a homogeneous soil, we showed that soil moisture dynamics in layered soils with discontinuous hydraulic conductivities are correctly simulated by PINNs with domain decomposition (using separate NNs for each unique layer). A key advantage of PINNs is the absence of the strict requirement for precisely prescribed initial and boundary conditions. In addition, unlike traditional numerical methods, PINNs provide an inverse solution without repeatedly solving the forward problem. We demonstrated the application of these advantages by successfully simulating infiltration and redistribution constrained by sparse soil moisture measurements. As a free by-product, we gain knowledge of the water flux over the entire flow domain, including the unspecified upper and bottom boundary conditions. Nevertheless, there remain challenges that require further development. Chiefly, PINNs are sensitive to the initialization of NNs and are significantly slower than traditional numerical methods.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference68 articles.

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., J., D., Devin, M., Ghemawat, S., I., G., Harp, A., Irving, G., Isard, M., Jozefowicz, R., Jia, Y., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Schuster, M., Monga, R., Moore, S., Murray, D., Olah, C., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous distributed systems, https://www.tensorflow.org/ (last access: 28 August 2022), 2015. a, b, c

2. Assouline, S. and Or, D.: Conceptual and parametric representation of soil hydraulic properties: A review, Vadose Zone J., 12, 1–20, https://doi.org/10.2136/vzj2013.07.0121, 2013. a

3. Babaeian, E., Sadeghi, M., Jones, S. B., Montzka, C., Vereecken, H., and Tuller, M.: Ground, proximal, and satellite remote sensing of soil moisture, Rev. Geophys., 57, 530–616, https://doi.org/10.1029/2018RG000618, 2019. a, b

4. Bandai, T. and Ghezzehei, T. A.: Physics‐informed neural networks with monotonicity constraints for Richardson–Richards equation: Estimation of constitutive relationships and soil water flux density from volumetric water content measurements, Water Resour. Res., 57, e2020WR027642, https://doi.org/10.1029/2020WR027642, 2021. a, b, c

5. Bandai, T. and Ghezzehei, T. A.: Author comment on “Forward and inverse modeling of water flow in unsaturated soils with discontinuous hydraulic conductivities using physics-informed neural networks with domain decomposition” by Toshiyuki Bandai and Teamrat A. Ghezzehei, https://doi.org/10.5194/hess-2022-73-AC2, 2022a. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3