Impacts of different types of El Niño events on water quality over the Corn Belt, United States
-
Published:2022-10-06
Issue:19
Volume:26
Page:4875-4892
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Chen PanORCID, Li Wenhong, He Keqi
Abstract
Abstract. The United States Corn Belt region, which primarily includes two large basins, namely, the Ohio–Tennessee River basin (OTRB) and the Upper Mississippi River basin (UMRB), is responsible for the Gulf of Mexico hypoxic zone. Climate patterns such as El Niño can affect the runoff and thus the water quality over the Corn Belt. In this study, the impacts of eastern Pacific (EP) and central Pacific (CP) El Niño events on water quality over the Corn Belt region were analyzed using the Soil and Water Assessment Tool (SWAT) models. Our results indicated that, at the outlets, annual total nitrogen (TN) and total phosphorus (TP) loads decreased by 13.1 % and 14.0 % at OTRB and 18.5 % and 19.8 % at UMRB, respectively, during the EP El Niño years, whereas during the CP El Niño years, they increased by 3.3 % and 4.6 % at OTRB and 5.7 % and 4.4 % at UMRB, respectively. On the subbasin scales, more subbasins showed negative (positive) anomalies of TN and TP during EP (CP) El Niño. A seasonal study confirmed that water quality anomalies showed the opposite patterns during EP and CP El Niño years. At the outlet of OTRB, seasonal anomalies in nutrients matched the El Niño–Southern Oscillation (ENSO) phases, illustrating the importance of climate variables associated with the two types of El Niño events on water quality in the region. At the UMRB, TN and TP were also influenced by agricultural activities within the region, and their anomalies became greater in the growing seasons during both EP and CP El Niño years. A quantitative analysis of precipitation, temperature, and their effects on nutrients suggested that precipitation played a more important role than temperature did in altering the water quality in the Corn Belt region during both types of El Niño years. We also found specific watersheds (located in Iowa, Illinois, Minnesota, Wisconsin, and Indiana) that faced the greatest increases in TN and TP loads and were affected by both the precipitation and agricultural activities during the CP El Niño years. The information generated from this study may help proper decision-making for water environment protection over the Corn Belt.
Funder
Natural Science Foundation of Shanxi Province Shanxi Provincial Key Research and Development Project Chinese Academy of Engineering China Scholarship Council Key Technologies Research and Development Program Natural Science Foundation for Young Scientists of Shanxi Province
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference58 articles.
1. Abbaspour, H., Saeidi-Sar, S., Afshari, H., and Abdel-Wahhab, M. A.:
Tolerance of Mycorrhiza infected Pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions, J. Plant Physiol., 169, 704–709, https://doi.org/10.1016/j.jplph.2012.01.014, 2012. 2. Afonso de Oliveira Serrão, E., Silva, M. T., Ferreira, T. R., Paiva de Ataide, L. C., Assis dos Santos, C., Meiguins de Lima, A. M., de Paulo Rodrigues da Silva, V., de Assis Salviano de Sousa, F., and Cardoso Gomes, D. J.:
Impacts of land use and land cover changes on hydrological processes and sediment yield determined using the SWAT model, Int. J. Sediment Res., 37, 54–69, https://doi.org/10.1016/j.ijsrc.2021.04.002, 2022. 3. Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.:
Large area hydrologic modeling and assessment part I: Model development, J. Am. Water Resour. Assoc., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998. 4. Baker, N. T.:
Tillage practices in the conterminous United States, 1989–2004 – Datasets aggregated by watershed, Data Series 573, U.S. Geological Survey, U.S. Department of the Interior, http://pubs.usgs.gov/ds/ds573/pdf/dataseries573final.pdf (last access: 1 September 2021), 2011. 5. Bales, R. C., Goulden, M. L., Hunsaker, C. T., Conklin, M. H., Hartsough, P. C., O'Geen, A. T., Hopmans, J. W., and Safeeq, M.:
Mechanisms controlling the impact of multi-year drought on mountain hydrology, Sci. Rep.-UK, 8, 690, https://doi.org/10.1038/s41598-017-19007-0, 2018.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|