Characterizing groundwater heat transport in a complex lowland aquifer using paleo-temperature reconstruction, satellite data, temperature–depth profiles, and numerical models
-
Published:2022-11-09
Issue:21
Volume:26
Page:5577-5604
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Casillas-Trasvina AlbertoORCID, Rogiers Bart, Beerten Koen, Wouters Laurent, Walraevens Kristine
Abstract
Abstract. Heat is a naturally occurring, widespread groundwater tracer that can be used to identify flow patterns in groundwater systems. Temperature measurements, being relatively inexpensive and effortless to gather, represent a valuable source of information which can be exploited to reduce uncertainties on groundwater flow, and, for example, support performance assessment studies on waste disposal sites. In a lowland setting, however, hydraulic gradients are typically small, and whether temperature measurements can be used to inform us about catchment-scale groundwater flow remains an open question. For the Neogene Aquifer in Flanders, groundwater flow and solute transport models have been developed in the framework of safety and feasibility studies for the underlying Boom Clay formation as a potential host rock for geological disposal of radioactive waste. However, the simulated fluxes by these models are still subject to large uncertainties as they are typically constrained by hydraulic heads only. In the current study, we use a state-of-the-art 3D steady-state groundwater flow model, calibrated against hydraulic head measurements, to build a 3D transient heat transport model, for assessing the use of heat as an additional state variable, in a lowland setting and at the catchment scale. We therefore use temperature–depth (TD) profiles as additional state variable observations for inverse conditioning. Furthermore, a Holocene paleo-temperature time curve was constructed based on paleo-temperature reconstructions in Europe from several sources in combination with land surface temperature (LST) remotely sensed monthly data from 2001 to 2019 (retrieved from NASA's Moderate Resolution Imaging Spectroradiometer, MODIS). The aim of the research is to understand the mechanisms of heat transport and to characterize the temperature distribution and dynamics in the Neogene Aquifer. The simulation results clearly underline advection/convection and conduction as the major heat transport mechanisms, with a reduced role of advection/convection in zones where flux magnitudes are low, which suggests that temperature is also a useful indicator in a lowland setting. Furthermore, the performed scenarios highlight the important roles of (i) surface hydrological features and withdrawals driving local groundwater flow systems and (ii) the inclusion of subsurface features like faults in the conceptualization and development of hydrogeological investigations. These findings serve as a proxy of the influence of advective transport and barrier/conduit role of faults, particularly for the Rauw fault in this case, and suggest that solutes released from the Boom Clay might be affected in similar ways.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference107 articles.
1. Anderson, M. P.: Heat as a ground water tracer, Groundwater, 43, 951–968, https://doi.org/10.1111/j.1745-6584.2005.00052.x, 2005. 2. Bartsch, S., Frei, S., Ruidisch, M., Shope, C. L., Peiffer, S., Kim, B., and
Fleckenstein, J. H.: River-aquifer exchange fluxes under monsoonal climate
conditions, J. Hydrol., 509, 601–614, https://doi.org/10.1016/j.jhydrol.2013.12.005,
2014. 3. Bedekar, V., Morway, E., Langevin, C., and Tonkin, M.: MT3D-USGS version 1: A
U.S. Geological Survey release of MT3DMS updated with new and expanded
transport capabilities for use with MODFLOW, Tech. Meth., 84, US Geological Survey, https://doi.org/10.3133/tm6A53, 2016. 4. Beerten, K., Wemaere, I., Gedeon, M., Labat, S., Rogiers, B., Mallants, D.,
Salah, S., and Leterme, B.: Geological, hydrogeological, and hydrological
data for the Dessel disposal site: Project near surface disposal of category
A waste at Dessel, NIROND-TR 2009-05, https://www.researchgate.net/publication/248707737_Geological_hydrogeological_and_hydrological_data_for_the_Dessel_disposal_site (last access: 7 November 2022), January 2010. 5. Bense, V. F. and Person, M. A.: Faults as conduit-barrier systems to fluid
flow in siliciclastic sedimentary aquifers, Water Resour. Res., 42, 1–18, https://doi.org/10.1029/2005WR004480, 2006.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|