Global assessment of subnational drought impact based on the Geocoded Disasters dataset and land reanalysis
-
Published:2022-09-27
Issue:18
Volume:26
Page:4707-4720
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Kageyama YuyaORCID, Sawada Yohei
Abstract
Abstract. Despite the importance of a link between hydrometeorological drought hazards and their socioeconomic impact, the link at a subnational level has yet to be evaluated due to the lack of precise subnational information on disaster locations. Using the newly developed Geocoded
Disasters (GDIS) dataset, we examined whether the subnational socioeconomic drought impact information in GDIS could be represented by hydrometeorological hazards quantified from soil moisture in ERA5-Land during 1964–2018. We found that the socioeconomic drought impacts shown in GDIS were generally represented by drought hazards quantified from ERA5-Land soil moisture. Our comparison between GDIS and ERA5-Land could benefit the quantification of vulnerability to drought, and we found that sub-Saharan Africa and South Asia were vulnerable to drought, while North America and Europe were less vulnerable to drought. Both GDIS and ERA5-Land indicated that the Horn of Africa, northern China, and western India were
drought-prone areas. Since it is difficult for national-level analyses to accurately identify the locations of drought-prone areas, especially in
large countries such as China and India, our analysis clarifies the importance of the use of subnational disaster information.
Funder
Japan Aerospace Exploration Agency Japan Society for the Promotion of Science
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference77 articles.
1. Almendra-Martín, L., Martínez-Fernández, J., González-Zamora, A., Benito-Verdugo, P., and Herrero-Jiménez, C. M.: Agricultural Drought Trends on the Iberian Peninsula: An Analysis Using Modeled and Reanalysis Soil Moisture Products, Atmosphere, 12, 236, https://doi.org/10.3390/atmos12020236, 2021. 2. Andreadis, K. M., Clark, E. A., Wood, A. W., Hamlet, A. F., and Lettenmaier, D. P.:
Twentieth-century drought in the conterminous United States, J. Hydrometeorol., 6, 985–1001, https://doi.org/10.1175/JHM450.1, 2005. 3. Bachmair, S., Svensson, C., Hannaford, J., Barker, L. J., and Stahl, K.:
A quantitative analysis to objectively appraise drought indicators and model drought impacts, Hydrol. Earth Syst. Sci., 20, 2589–2609, https://doi.org/10.5194/hess-20-2589-2016, 2016. 4. Bayissa, Y., Maskey, S., Tadesse, T., van Andel, S. J., Moges, S., van Griensven, A., and Solomatine, D.: Comparison of the Performance of Six Drought Indices in Characterizing Historical Drought for the Upper Blue Nile Basin, Ethiopia, Geosciences, 8, 81, https://doi.org/10.3390/geosciences8030081, 2018. 5. Birkmann, J., Feldmeyer, D., McMillan, J. M., Solecki, W., Totin, E., Roberts, D., Trisos, C., Jamshed, A., Boyd, E., and Wrathall, D.: Regional clusters of vulnerability show the need for transboundary cooperation, Environ. Res. Lett., 16, 094052, https://doi.org/10.1088/1748-9326/ac1f43, 2021.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|