On the contribution of grain boundary sliding type creep to firn densification – an assessment using an optimization approach
-
Published:2022-01-14
Issue:1
Volume:16
Page:143-158
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Schultz TimmORCID, Müller Ralf, Gross Dietmar, Humbert AngelikaORCID
Abstract
Abstract. Simulation approaches to firn densification often rely on the assumption that grain boundary sliding is the leading process driving the first stage of densification. Alley (1987) first developed a process-based material model of firn that describes this process. However, often so-called semi-empirical models are favored over the physical description of grain boundary sliding owing to their simplicity and the uncertainties regarding model parameters. In this study, we assessed the applicability of the grain boundary sliding model of Alley (1987) to firn using a numeric firn densification model and an optimization approach, for which we formulated variants of the constitutive relation of Alley (1987). An efficient model implementation based on an updated Lagrangian numerical scheme enabled us to perform a large number of simulations to test different model parameters and identify the simulation results that best reproduced 159 firn density profiles from Greenland and Antarctica. For most of the investigated locations, the simulated and measured firn density profiles were in good agreement. This result implies that the constitutive relation of Alley (1987) characterizes the first stage of firn densification well when suitable model parameters are used. An analysis of the parameters that result in the best agreement revealed a dependence on the mean surface mass balance. This finding may indicate that the load is insufficiently described, as the lateral components of the stress tensor are usually neglected in one-dimensional models of the firn column.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference54 articles.
1. Alley, R. B.: Firn Densification by Grain-Boundary-Sliding: A First Model,
Journal de Physique, 48, C1-249–C1-256, https://doi.org/10.1051/jphyscol:1987135, 1987. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac, ad, ae, af, ag, ah, ai, aj, ak, al, am, an, ao, ap, aq 2. Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model:
Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS
NGDC-24, National Geophysical Data Center, NOAA, https://doi.org/10.7289/V5C8276M, 2009. a 3. Anderson, D. L. and Benson, C. S.: Ice and Snow: Properties, Processes and
Applications, in: chap. The densification and diagenesis of snow, MIT Press, Cambridge, MA, 391–411, ISBN 13 978-0262110099, 1963. a 4. Arnaud, L., Barnola, J. M., and Duval, P.: Physical modeling of the
densification of snow/firn and ice in the upper part of polar ice sheets,
Physics of Ice Core Records, 285–305, available at: http://hdl.handle.net/2115/32472 (last access: 13 January 2022), 2000. a, b, c 5. Arndt, J. E., Schenke, H. W., Jakobsson, M., Nitsche, F. O., Buys, G., Goleby, B., Rebesco, M., Bohoyo, F., Hong, J., Black, J., Greku, R., Udintsev, G., Barrios, F., Reynoso-Peralta, W., Taisei, M., and Wigley, R.: The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0 – A new bathymetric compilation covering circum-Antarctic waters, Geophys. Res. Lett., 40, 3111–3117, https://doi.org/10.1002/grl.50413, 2013. a
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|