Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0)
-
Published:2018-07-12
Issue:7
Volume:11
Page:2789-2812
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
von Bloh Werner, Schaphoff Sibyll, Müller ChristophORCID, Rolinski Susanne, Waha Katharina, Zaehle SönkeORCID
Abstract
Abstract. The well-established dynamical global vegetation,
hydrology, and crop growth model LPJmL is extended with a terrestrial nitrogen
cycle to account for nutrient limitations. In particular, processes of soil
nitrogen dynamics, plant uptake, nitrogen allocation, response of
photosynthesis and maintenance respiration to varying nitrogen concentrations
in plant organs, and agricultural nitrogen management are included in the
model. All new model features are described in full detail and the results of a
global simulation of the historic past (1901–2009) are presented for
evaluation of the model performance. We find that the implementation of nitrogen
limitation significantly improves the simulation of global patterns of crop
productivity. Regional differences in crop productivity, which had to be
calibrated via a scaling of the maximum leaf area index, can now largely be
reproduced by the model, except for regions where fertilizer inputs and
climate conditions are not the yield-limiting factors. Furthermore, it can be
shown that land use has a strong influence on nitrogen losses, increasing
leaching by 93 %.
Publisher
Copernicus GmbH
Reference117 articles.
1. Arneth, A., Sitch, S., Pongratz, J., Stocker, B. D., Ciais, P., Poulter, B.,
Bayer, A. D., Bondeau, A., Calle, L., Chini, L. P., Gasser, T., Fader, M.,
Friedlingstein, P., Kato, E., Li, W., Lindeskog, M., Nabel, J. E. M. S.,
Pugh, T. A. M., Robertson, E., Viovy, N., Yue, C., and Zaehle, S.: Historical
carbon dioxide emissions caused by land-use changes are possibly larger than
assumed, Nat. Geosci., 10, 79–84, https://doi.org/10.1038/ngeo2882, 2017. a 2. Arnold, J. G., Kiniry, J. R., Williams, J. R., Haney, E. B., and Neitsch,
S. L.: Soil and water assessment tool input/output documentation version
2012, Texas Water Resources Institute, College Station, Texas, 2012. a 3. Ascott, M. J., Gooddy, D. C., Wang, L., Stuart, M. E., Lewis, M. A., Ward,
R. S., and Binley, A. M.: Global patterns of nitrate storage in the vadose
zone, Nat. Comm., 8, 1416, https://doi.org/10.1038/s41467-017-01321-w, 2017. a 4. Atkin, O., Schortemeyer, M., McFarlane, N., and Evans, J.: The response of
fast- and slow-growing Acacia species to elevated atmospheric CO2: an
analysis of the underlying components of relative growth rate, Oecologica,
120, 544–554, https://doi.org/10.1007/s004420050889, 1999. a 5. Baker, T. R., Phillips, O. L., Laurance, W. F., Pitman, N. C. A., Almeida,
S., Arroyo, L., DiFiore, A., Erwin, T., Higuchi, N., Killeen, T. J.,
Laurance, S. G., Nascimento, H., Monteagudo, A., Neill, D. A., Silva, J. N.
M., Malhi, Y., López Gonzalez, G., Peacock, J., Quesada, C. A., Lewis, S.
L., and Lloyd, J.: Do species traits determine patterns of wood production in
Amazonian forests?, Biogeosciences, 6, 297–307,
https://doi.org/10.5194/bg-6-297-2009, 2009. a
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|