Regional modeling of vegetation and long term runoff for Mesoamerica

Author:

Imbach P.,Molina L.,Locatelli B.,Roupsard O.,Ciais P.,Corrales L.,Mahe G.

Abstract

Abstract. Regional runoff, evapotranspiration, leaf area index (LAI) and potential vegetation were modeled for Mesoamerica using the SVAT model MAPSS. We calibrated and validated the model after building a comprehensive database of regional runoff, climate, soils and LAI. The performance of several gridded precipitation forcings (CRU, FCLIM, WorldClim, TRMM, WindPPT and TCMF) was evaluated and FCLIM produced the most realistic runoff. Annual runoff was successfully predicted (R2=0.84) for a set of 138 catchments with a regression slope of 0.88 and an intercept close to zero. This low runoff bias might originate from MAPSS assumption of potential vegetation cover and to underestimation of the precipitation over cloud forests. The residues were found to be larger in small catchments but to remain homogeneous across elevation, precipitation and land use gradients. Based on the assumption of uniform distribution of parameters around literature values, and using a Monte Carlo-type approach, we estimated an average model uncertainty of 42% of the annual runoff. The MAPSS model was found to be most sensitive to the parameterization of stomatal conductance. Monthly runoff seasonality was fairly mimicked (Kendal tau correlation coefficient higher than 0.5) in 78% of the catchments. Predicted LAI was consistent with EOS-TERRA-MODIS collection 5 and ATSR-VEGETATION-GLOBCARBON remotely sensed global products. The simulated evapotranspiration:runoff ratio increased exponentially for low precipitation areas, stressing the importance of accurately modeling evapotranspiration below 1500 mm of annual rainfall with the help of SVAT models such as MAPSS. We propose the first high resolution (1 km2 pixel) maps combining runoff, evapotranspiration, leaf area index and potential vegetation types for Mesoamerica.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3