Urban hydrology in mountainous middle eastern cities

Author:

Grodek T.,Lange J.,Lekach J.,Husary S.

Abstract

Abstract. The Mediterranean climate together with the type of urban setting found in mountainous Middle Eastern cities generate much lower runoff yields than previously reported and than usually estimated for urban design. In fact, a close analysis shows that most of the rainwater remains within the cities as a possible source for urban groundwater recharge. The present study examined two locales – Ramallah, an old traditional Palestinian Arab town, and Modiin, a new township in Israel – both situated on the karstic Yarkon Taninim aquifer. This aquifer supplies the only high-quality drinking water in the region (one quarter of the Israeli-Palestinian water demand), which is characterized by dense populations and limited water resources. This paper provides the first measured information on the hydrological effects of urbanization in the area. It was found that the shift of the mountainous natural steep slopes into a series of closed-terraced homes and gardens created areas that are disconnected from the urban runoff response. Roofs drained into the attached gardens and created favorable recharge units. Mainly low-gradient roads became the principal source for urban runoff already following 1–4 mm of rainfall. Parallel roads converted single peak hydrographs towards multi-peak runoff responses, increasing flow duration and reducing peak discharges. The remaining urban area (public parks, natural areas, etc.) generated runoff only as a result of high-magnitude rainstorms. All of the above conditions limited urban runoff coefficients to an upper boundary of only 22% and 30% (Ramallah and Modiin, respectively). During extreme rainstorms (above 100 mm) similar runoff coefficients were measured in urban and natural catchments as a result of the limited areas contributing to runoff in the urban areas, while natural terrain does not have these artificial limits. Hence, it was found, the effects of urbanization decrease with event magnitude and there is significant potential for urban groundwater recharge. However, frequent low-magnitude rainstorms often generate highly polluted stormwater in urban sewer systems and this water should only be used with great caution.

Publisher

Copernicus GmbH

Reference37 articles.

1. Aryal, R. K., Furumai, H., Nakajima, F., and Boller, M.: Characteristics of particle-associated PAHs in a first flush of a highway runoff, Water Sci. Technol., 53(2), 245–251, 2006.

2. Ben-Asher, J., Prinz, D., Laronne, J. B., and Abravia, I.: Greenhouse roof top water harvesting, in: Water Resources Management Under Drought or Water Shortage Conditions, edited by: Tsiourtis, N., Balkema, Rotterdam, 145–152, 1995.

3. Bedient, B. P. and Huber, W. C.: Hydrology and Floodplain Analysis, Addison Wesley Reading, Massachusetts, USA, 1992.

4. Cheng, S. and Wang, R.: An approach for evaluating the hydrological effects of urbanization and its application, Hydrol. Process., 16, 1403–1418, 2002.

5. Cordery, I.: Quality characteristics of urban storm water in Sydney, Australia, Water Resour. Res., 13(1), 197–202, 1977.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3