Reliability and robustness of rainfall compound distribution model based on weather pattern sub-sampling

Author:

Garavaglia F.,Lang M.,Paquet E.,Gailhard J.,Garçon R.,Renard B.

Abstract

Abstract. Design floods for EDF (Électricité de France, French electricity company) dam spillways are now computed using a probabilistic method named SCHADEX (Climatic-Hydrological Simulation of Extreme Floods) based on an extreme rainfall model named the MEWP (Multi Exponential Weather Pattern) distribution. This probabilistic model provides estimates of extreme rainfall quantiles using a mixture of exponential distributions. Each exponential distribution applies to a specific sub-sample of rainfall observations, corresponding to one of eight typical atmospheric circulation patterns that are relevant for France and the surrounding area. The aim of this paper is to validate the MEWP model by assessing its reliability and robustness with rainfall data from France, Spain and Switzerland. Data include 37 long series for the period 1904–2003, and a regional data set of 478 rain gauges for the period 1954–2005. Two complementary properties are investigated: (i) the reliability of estimates, i.e. the agreement between the estimated probabilities of exceedance and the actual exceedances observed on the dataset; (ii) the robustness of extreme quantiles and associated confidence intervals, assessed using various sub-samples of the long data series. New specific criteria are proposed to quantify reliability and robustness.The MEWP model is compared to standard models (seasonalised Generalised Extreme Value and Generalised Pareto distributions). In order to evaluate the suitability of the exponential model used for each weather pattern (WP), a general case of the MEWP distribution, using Generalized Pareto distributions for each WP, is also considered. Concerning the considered dataset, the exponential hypothesis of asymptotic behaviour of each seasonal and weather pattern rainfall records, appears to be reasonable. The results highlight: (i) the interest of WP sub-sampling that lead to significant improvement in reliability models performances; (ii) the low level of robustness of the models based on at-site estimation of shape parameter; (iii) the MEWP distribution proved to be robust and reliable, demonstrating the interest of the proposed approach.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3