Evidence for enhanced infiltration of ion load during snowmelt

Author:

Lilbæk G.,Pomeroy J. W.

Abstract

Abstract. Meltwater ion concentration and infiltration rate into frozen soil both decline rapidly as snowmelt progresses. Their temporal association is highly non-linear and a covariance term must be added in order to use time-averaged values of snowmelt ion concentration and infiltration rate to calculate chemical infiltration. The covariance is labelled enhanced infiltration and represents the additional ion load that infiltrates due to the timing of high meltwater concentration and infiltration rate. Previous assessment of the impact of enhanced infiltration has been theoretical; thus, experiments were carried out to examine whether enhanced infiltration can be recognized in controlled laboratory settings and to what extent its magnitude varies with soil moisture. Three experiments were carried out: dry soil conditions, unsaturated soil conditions, and saturated soil conditions. Chloride solution was added to the surface of frozen soil columns; the concentration decreased exponentially over time to simulate snow meltwater. Infiltration excess water was collected and its chloride concentration and volume determined. Ion load infiltrating the frozen soil was specified by mass conservation. Results showed that infiltrating ion load increased with decreasing soil moisture as expected; however, the impact of enhanced infiltration increased considerably with increasing soil moisture. Enhanced infiltration caused 2.5 times more ion load to infiltrate during saturated conditions than that estimated using time-averaged ion concentrations and infiltration rates alone. For unsaturated conditions, enhanced infiltration was reduced to 1.45 and for dry soils to 1.3. Reduction in infiltration excess ion load due to enhanced infiltration increased slightly (2–5%) over time, being greatest for the dry soil (45%) and least for the saturated soil (6%). The importance of timing between high ion concentrations and high infiltration rates was best illustrated in the unsaturated experiment, which showed large inter-column variation in enhanced ion infiltration due to variation in this temporal covariance.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3