On the water thermal response to the passage of cold fronts: initial results for Itumbiara reservoir (Brazil)

Author:

Alcântara E. H.,Bonnet M. P.,Assireu A. T.,Stech J. L.,Novo E. M. L. M.,Lorenzzetti J. A.

Abstract

Abstract. The passage of meteorological systems such as cold fronts or convergence zones over reservoirs can cause significant modifications in several aquatic variables. Cold fronts coming from higher latitudes and reaching the Southeastern Brazilian territory modify the mean wind field and have important impact over physical, chemical and biological processes that act in the hydroelectric reservoirs. The mean period of cold front passages along the Southeastern Brazilian coast is 6 days during the winter and between 11 and 14 days in the summer. Most of these fronts also affect the hinterland of São Paulo, Minas Gerais and Goiás states. The objective of this work is to analyze the influence of cold front passages in the thermal stratification and water quality of the Itumbiara hydroelectric reservoir which is located in Minas Gerais and Goiás. The characterization of cold front passages over the study area was done through the analysis of GOES satellite images. The analyzed data set includes time series of meteorological (wind direction and intensity, short-wave radiation, air temperature, relative humidity, atmospheric pressure) and water temperature in four depths (5, 12, 20 and 40 m). The data set was acquired in the interior of the reservoir by an autonomous anchored buoy system at a sampling rate of 1 h. The stratification was assessed by non-dimensional parameter analysis. The lake number an indicator of the degree of stability and mixing in the reservoir was used in this analysis. We will show that during the cold front all atmospheric parameters respond and this response are transferred immediately to the water surface. The main effect is observed in the water column, when the heat loss in the surface allows the upwelling events caused by convective cooling due to the erosion of thermal stratification.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3