Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations

Author:

Di Noia A.ORCID,Hasekamp O. P.,van Harten G.,Rietjens J. H. H.,Smit J. M.,Snik F.,Henzing J. S.,de Boer J.,Keller C. U.,Volten H.

Abstract

Abstract. In this paper, the use of a neural network algorithm for the retrieval of the aerosol properties from ground-based spectropolarimetric measurements is discussed. The neural network is able to retrieve the aerosol properties with an accuracy that is almost comparable to that of an iterative retrieval. By using the outcome of the neural network as a first guess of the iterative retrieval scheme, the accuracy of the fine and coarse mode optical thickness are further improved while for the other parameters the improvement is small or absent. The resulting scheme (neural network + iterative retrieval) is compared to the original one (look-up table + iterative retrieval) on a set of simulated ground-based measurements, and on a small set of real observations carried out by an accurate ground-based spectropolarimeter. The results show that the use of a neural network based first guess leads to an increase in the number of converging retrievals, and possibly to more accurate estimates of the aerosol effective radius and complex refractive index.

Funder

Netherlands Space Office

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3