Changes of deep soil desiccation with plant growth age in the Chinese Loess Plateau
Author:
Wang Y. Q.,Shao M. A.,Liu Z. P.,Zhang C. C.
Abstract
Abstract. Negative water balance in soil can lead to soil desiccation and subsequent the formation of a dried soil layer (DSL). Essential progress on DSL temporal change has been hampered by difficulty in collecting deep soil water samples (i.e. > 1000 cm), which are necessary to quantify the real extent of DSL. We collected soil samples up to a depth of 1800 cm and investigated the evolution of soil water content (SWC) and DSL under three vegetation types (C. korshinskii, R. pseudoacacia, apple) in three zones (Ansai, Luochuan, and Changwu) of the Chinese Loess Plateau. As plant growth age increased, SWC, available soil water (ASW), SWC within DSL (DSL-SWC), and quantity of water deficit for DSL (DSL-QWD) showed similar change trends of decreasing at first and then increasing, whereas DSL thickness (DSLT) showed an increasing trend over time. A turning point in soil water change was found for the three vegetation types. In Changwu zone, the turning point, both in and out of DSL, was corresponded to the 17-year-old apple orchard. The period from 9 to 17 yr was vital to maintain the buffering function of deep soil water pool and to avoid the deterioration of soil desiccation because the highest mean decline velocity of ASW and the maximum mean forming velocity of DSLT were 165 mm yr−1 and 168 cm yr−1, respectively. Significant correlations were found between DSLT and growth age and root depth, and between DSL-QWD and root depth, whereas mean DSL-SWC had no significant correlation with either growth year or root depth. Soil water condition was highly dependent on the growth year of the plants. This information provides pertinent reference for water resource management in the Chinese Loess Plateau and possibly in other water-limited regions in the world.
Publisher
Copernicus GmbH
Reference43 articles.
1. Breshears, D. D., Cobb, N. S., Rich, P. M., Price, K. P., Allen, C. D., Balice, R. G., Romme, W. H., Kastens, J. H., Floyd, M. L., Belnap, J., Anderson, J. J., Myers, O. B., and Meyer, C. W.: Regional vegetation die-off in response to global-change-type drought, P. Natl. Acad. Sci. USA, 102, 15144–15148, https://doi.org/10.1073/pnas.0505734102, 2005. 2. Brown, K.: Environmental data – water scarcity: forecasting the future with spotty data, Science, 297, 926–927, 2002. 3. Chen, H. S., Shao, M. A., and Li, Y. Y.: Soil desiccation in the Loess Plateau of China, Geoderma, 143, 91–100, 2008a. 4. Chen, H. S., Shao, M. A., and Li, Y. Y.: The characteristics of soil water cycle and water balance on steep grassland under natural and simulated rainfall conditions in the Loess Plateau of China, J. Hydrol., 360, 242–251, 2008b. 5. Chen, L. D., Wei, W., Fu, B. J., and Lü, Y. H.: Soil and water conservation on the Loess Plateau in China: review and perspective, Prog. Phys. Geog., 31, 389–403, 2007.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|