Water storage change estimation from in situ shrinkage measurements of clay soils

Author:

te Brake B.,van der Ploeg M. J.,de Rooij G. H.

Abstract

Abstract. Water storage in the unsaturated zone is a major determinant of the hydrological behaviour of the soil, but methods to quantify soil water storage are limited. The objective of this study is to assess the applicability of clay soil surface elevation change measurements to estimate soil water storage changes. We measured moisture contents in soil aggregates by EC-5 sensors, and in volumes comprising multiple aggregates and intra-aggregates spaces by CS616 sensors. In a prolonged drying period, aggregate-scale storage change measurements revealed normal shrinkage for layers ≥ 30 cm depth, indicating volume loss equalled water loss. Shrinkage in a soil volume including multiple aggregates and voids was slightly less than normal, due to soil moisture variations in the profile and delayed drying of deeper soil layers upon lowering of the groundwater level. This resulted in shrinkage curve slopes of 0.89, 0.90 and 0.79 for the layers 0–60, 0–100 and 0–150 cm. Under a dynamic drying and wetting regime, shrinkage curve slopes ranged from 0.29 to 0.69 (EC-5) and 0.27 to 0.51 (CS616). Alternation of shrinkage and incomplete swelling resulted in an underestimation of volume change relatively to water storage change, due to hysteresis between swelling and shrinkage. Since the slope of the shrinkage relation depends on the drying regime, measurement scale and combined effect of different soil layers, shrinkage curves from laboratory tests on clay aggregates require suitable modifications for application to soil profiles. Then, the linear portion of the curve can help soil water storage estimation from soil surface elevation changes. These elevation changes might be measurable over larger extents by remote sensing.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3