Calibration and evaluation of a semi-distributed watershed model of sub-Saharan Africa using GRACE data

Author:

Xie H.,Longuevergne L.,Ringler C.,Scanlon B.

Abstract

Abstract. Irrigation development is rapidly expanding in mostly rainfed Sub-Saharan Africa. This expansion underscores the need for a more comprehensive understanding of water resources beyond surface water. Gravity Recovery and Climate Experiment (GRACE) satellites provide valuable information on spatio-temporal variability of water storage. The objective of this study was to calibrate and evaluate a semi-distributed regional-scale hydrological model, or a large-scale application of the Soil and Water Assessment Tool (SWAT) model, for basins in Sub-Saharan Africa using seven-year (2002–2009) 10-day GRACE data. Multi-site river discharge data were used as well, and the analysis was conducted in a multi-criteria framework. In spite of the uncertainty arising from the tradeoff in optimizing model parameters with respect to two non-commensurable criteria defined for two fluxes, it is concluded that SWAT can perform well in simulating total water storage variability in most areas of Sub-Saharan Africa, which have semi-arid and sub-humid climates, and that among various water storages represented in SWAT, the water storage variations from soil, the vadose zone, and groundwater are dominant. On the other hand, the study also showed that the simulated total water storage variations tend to have less agreement with the GRACE data in arid and equatorial humid regions, and the model-based partition of total water storage variations into different water storage compartments could be highly uncertain. Thus, future work will be needed for model enhancement in these areas with inferior model fit and for uncertainty reduction in component-wise estimation of water storage variations.

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3