Linking ENSO and heavy rainfall events over Coastal British Columbia through a weather pattern classification

Author:

Brigode P.,Mićović Z.,Bernardara P.,Paquet E.,Garavaglia F.,Gailhard J.,Ribstein P.

Abstract

Abstract. Classifications of atmospheric weather patterns (WPs) are widely used for the description of the climate of a given region and are employed for many applications, such as weather forecasting, downscaling of global circulation model outputs and reconstruction of past climates. WP classifications were recently used to improve the statistical characterisation of heavy rainfall. In this context, bottom-up approaches, combining spatial distribution of heavy rainfall observations and geopotential height fields have been used to define WP classifications relevant for heavy rainfall statistical analysis. The definition of WPs at the synoptic scale creates an interesting variable which could be used as a link between the global scale of climate signals and the local scale of precipitation station measurements. We introduce here a new WP classification centred on the British Columbia Coastal region (Canada) and based on a bottom-up approach. Five contrasted WPs composed this classification, four rainy WPs and one non-rainy WP, the anticyclonic pattern. The four rainy WPs are mainly observed in the winter months (October to March), which is the period of heavy precipitation events in Coastal BC and is thus consistent with the local climatology. The combination of this WP classification with the seasonal description of rainfall is shown to be useful for splitting observed precipitation series into more homogeneous sub-samples and thus identifying, for each station, the synoptic situations that generate the highest hazard in terms of heavy rainfall events. El Niño Southern Oscillations significantly influence the frequency of occurrence of two Coastal BC WPs. Within each WP, ENSO seem to influence only the frequency of rainy events and not the magnitudes of heavy rainfall events. Consequently, MEWP heavy rainfall estimations do not show significant evolution of heavy rainfall behaviour between Niño and Niña winters. However, the WP approach captures the variability of the probability of occurrences of synoptic situations generating heavy rainfall depending on ENSO and opening interesting perspectives for the analysis of heavy rainfall distribution in a non-stationary context.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3