Impacts of impervious cover, water withdrawals, and climate change on river flows in the Conterminous US
Author:
Caldwell P. V.,Sun G.,McNulty S. G.,Cohen E. C.,Moore Myers J. A.
Abstract
Abstract. Rivers are essential to aquatic ecosystem and societal sustainability, but are increasingly impacted by water withdrawals, land use change, and climate change. The relative and cumulative effects of these stressors on continental river flows are relatively unknown. In this study, we used an integrated water balance and flow routing model to evaluate the impacts of 2010 impervious cover and water withdrawal on river flow across the Conterminous US at the 8-digit Hydrologic Unit Code (HUC) watershed scale. We then estimated the impacts of projected change in withdrawals, impervious cover, and climate under the B1 "low" and A2 "high" emission scenarios on river flows by 2060. Our results suggest that compared to no impervious cover, 2010 levels of impervious cover increased river flows by 9.9% on average with larger impacts in and downstream of major metropolitan areas. In contrast, compared to no water withdrawals, 2010 withdrawals decreased river flows by 1.4% on average with larger impacts in heavily irrigated arid regions of Western US. By 2060, impacts of climate change were predicted to overwhelm the potential gain in river flow due to future changes in impervious cover and add to the potential reduction in river flows from withdrawals, decreasing mean annual river flows from 2010 levels by 16% on average. However, increases in impervious cover by 2060 may offset the impact of climate change during the growing season in some watersheds. Large water withdrawals will aggravate the predicted impact of climate change on river flows, particularly in the Western US. Given that the impacts of land use, withdrawals and climate may be either additive or offsetting in different magnitudes, integrated and spatially explicit modelling and management approaches are necessary to effectively manage water resources for aquatic life and human use in the face of global change.
Publisher
Copernicus GmbH
Reference61 articles.
1. Alcamo, J., Döll, P., Henrichs, T., Kaspar, F, Lehner, B., Rösch, T., Siebert, S.: Global estimates of water withdrawals and availability under current and future "business-as-usual" conditions, Hydrol. Sci. J., 48, 339–348, https://doi.org/10.1623/hysj.48.3.339.45278, 2003. 2. Anderson, R. M., Koren, V., and Reed, S.: Using SSURGO data to improve Sacramento Model a priori parameter estimates, J. Hydrol., 320, 103–116, https://doi.org/10.1016/j.jhydrol.2005.07.020, 2006. 3. Arnell, N. W.: Climate change and global water resources, Global Environ. Change, 9, S31–S49, https://doi.org/10.1016/S0959-3780(99)00017-5, 1999. 4. Averyt, K., Fisher, J., Huber-Lee, A., Lewis, A., Macknick, J., Madden, N., Rogers, J., and Tellinghuisen, S.: Freshwater use by US power plants: electricity's thirst for a precious resource, A report of the Energy and Water in a Warming World initiative, Cambridge, MA, Union of Concerned Scientists, 2011. 5. Bates, B. C., Kundzewicz, Z. W., Wu, S., and Palutikof, J. P. (Eds.): Climate Change and Water, Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 2008.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|