Hydrological drought across the world: impact of climate and physical catchment structure

Author:

Van Lanen H. A. J.,Wanders N.,Tallaksen L. M.,Van Loon A. F.

Abstract

Abstract. Large-scale hydrological drought studies have demonstrated spatial and temporal patterns in observed trends and considerable difference exists among global hydrological models in their ability to reproduce these patterns. A controlled modeling experiment has been set up to systematically explore the role of climate and physical catchment structure (soils and groundwater systems) to better understand underlying drought-generating mechanisms. Daily climate data (1958–2001) of 1495 grid cells across the world were selected that represent Köppen-Geiger major climate types. These data were fed into a hydrological model. Nine realizations of physical catchment structure were defined for each grid cell, i.e. three soils with different soil moisture supply capacity and three groundwater systems (quickly-, intermediary- and slowly-responding). Hydrological drought characteristics (number, duration and standardized deficit volume) were identified from time series of daily discharge. Summary statistics showed that the equatorial and temperate climate types (A- and C-climates) had about twice as many drought events as the arid and polar types (B- and E-climates) and the duration of more extreme droughts were about half the length. Soils were found to have a minor effect on hydrological drought characteristics, whereas groundwater systems had major impact. Groundwater systems strongly controlled the hydrological drought characteristics of all climate types, but particularly those of the wetter A-, C- and D-climates because of higher recharge. The median number of drought for quickly-responding groundwater systems was about three times higher than for slowly-responding systems, which substantially affected the duration, particularly of the more extreme drought events. Bivariate probability distributions of drought duration and standardized deficit for combinations of Köppen-Geiger climate, soil and groundwater system showed that responsiveness of groundwater systems is as important as climate for hydrological drought development. This urges for an improvement of subsurface modules in global hydrological models to be more useful for water resources assessments. A foreseen higher spatial resolution would enable a better hydrogeological parameterization and inclusion of lateral flow.

Funder

European Commission

Publisher

Copernicus GmbH

Reference98 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3