Gravity waves generated by the Hunga Tonga–Hunga Ha′apai volcanic eruption and their global propagation in the mesosphere/lower thermosphere observed by meteor radars and modeled with the High-Altitude general Mechanistic Circulation Model
-
Published:2024-04-24
Issue:8
Volume:24
Page:4851-4873
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Stober GunterORCID, Vadas Sharon L., Becker ErichORCID, Liu Alan, Kozlovsky AlexanderORCID, Janches Diego, Qiao ZishunORCID, Krochin WitaliORCID, Shi GuochunORCID, Yi WenORCID, Zeng Jie, Brown Peter, Vida DenisORCID, Hindley NeilORCID, Jacobi ChristophORCID, Murphy DamianORCID, Buriti RicardoORCID, Andrioli VaniaORCID, Batista PauloORCID, Marino JohnORCID, Palo Scott, Thorsen Denise, Tsutsumi MasakiORCID, Gulbrandsen Njål, Nozawa SatonoriORCID, Lester Mark, Baumgarten Kathrin, Kero JohanORCID, Belova EvgeniaORCID, Mitchell Nicholas, Moffat-Griffin TracyORCID, Li NaORCID
Abstract
Abstract. The Hunga Tonga–Hunga Ha′apai volcano erupted on 15 January 2022, launching Lamb waves and gravity waves into the atmosphere. In this study, we present results using 13 globally distributed meteor radars and identify the volcanogenic gravity waves in the mesospheric/lower thermospheric winds. Leveraging the High-Altitude Mechanistic general Circulation Model (HIAMCM), we compare the global propagation of these gravity waves. We observed an eastward-propagating gravity wave packet with an observed phase speed of 240 ± 5.7 m s−1 and a westward-propagating gravity wave with an observed phase speed of 166.5 ± 6.4 m s−1. We identified these waves in HIAMCM and obtained very good agreement of the observed phase speeds of 239.5 ± 4.3 and 162.2 ± 6.1 m s−1 for the eastward the westward waves, respectively. Considering that HIAMCM perturbations in the mesosphere/lower thermosphere were the result of the secondary waves generated by the dissipation of the primary gravity waves from the volcanic eruption, this affirms the importance of higher-order wave generation. Furthermore, based on meteor radar observations of the gravity wave propagation around the globe, we estimate the eruption time to be within 6 min of the nominal value of 15 January 2022 04:15 UTC, and we localized the volcanic eruption to be within 78 km relative to the World Geodetic System 84 coordinates of the volcano, confirming our estimates to be realistic.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung National Science Foundation National Natural Science Foundation of China Science and Technology Facilities Council Japan Society for the Promotion of Science Australian Antarctic Division NASA Engineering and Safety Center Deutsche Forschungsgemeinschaft International Space Science Institute
Publisher
Copernicus GmbH
Reference59 articles.
1. Amores, A., Monserrat, S., Marcos, M., Argüeso, D., Villalonga, J., Jordà, G., and Gomis, D.: Numerical Simulation of Atmospheric Lamb Waves Generated by the 2022 Hunga-Tonga Volcanic Eruption, Geophys. Res. Lett., 49, e2022GL098240, https://doi.org/10.1029/2022GL098240, 2022. a 2. Andrioli, V. F., Fritts, D. C., Batista, P. P., and Clemesha, B. R.: Improved analysis of all-sky meteor radar measurements of gravity wave variances and momentum fluxes, Ann. Geophys., 31, 889–908, https://doi.org/10.5194/angeo-31-889-2013, 2013. a, b 3. Baumgarten, K. and Stober, G.: On the evaluation of the phase relation between temperature and wind tides based on ground-based measurements and reanalysis data in the middle atmosphere, Ann. Geophys., 37, 581–602, https://doi.org/10.5194/angeo-37-581-2019, 2019. a 4. Becker, E. and Vadas, S. L.: Explicit Global Simulation of Gravity Waves in the Thermosphere, J. Geophys. Res.-Space, 125, e2020JA028034, https://doi.org/10.1029/2020JA028034, 2020. a 5. Becker, E., Vadas, S. L., Bossert, K., Harvey, V. L., Zülicke, C., and Hoffmann, L.: A High-Resolution Whole-Atmosphere Model With Resolved Gravity Waves and Specified Large-Scale Dynamics in the Troposphere and Stratosphere, J. Geophys. Res.-Atmos., 127, e2021JD035018, https://doi.org/10.1029/2021JD035018, 2022. a, b
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|