Improved instrumental line shape monitoring for the ground-based, high-resolution FTIR spectrometers of the Network for the Detection of Atmospheric Composition Change
-
Published:2012-03-23
Issue:3
Volume:5
Page:603-610
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Abstract
Abstract. We propose an improved monitoring scheme for the instrumental line shape (ILS) of high-resolution, ground-based FTIR (Fourier Transform InfraRed) spectrometers used for chemical monitoring of the atmosphere by the Network for Detection of Atmospheric Composition Change (NDACC). Good ILS knowledge is required for the analysis of the recorded mid-infrared spectra. The new method applies a sequence of measurements using different gas cells instead of a single calibration cell. Three cells are used: cell C1 is a refillable cell offering 200 mm path length and equipped with a pressure gauge (filled with 100 Pa N2O), cells C2 and C3 are sealed cells offering 75 mm path length. C2 is filled with 5 Pa of pure N2O. Cell C3 is filled with 16 Pa N2O in 200 hPa technical air, so provides pressure-broadened N2O lines. We demonstrate that an ILS retrieval using C1 improves significantly the sensitivity of the ILS retrieval over the current calibration cells used in the network, because this cell provides narrow fully saturated N2O lines. The N2O columns derived from C2 and C3 allow the performance of a highly valuable closure experiment: adopting the ILS retrieved from C1, the N2O columns of C2 and C3 are derived. Because N2O is an inert gas, both columns should be constant on long timescales. Apparent changes in the columns would immediately attract attention and indicate either inconsistent ILS results or instrumental problems of other origin. Two different cells are applied for the closure experiment, because the NDACC spectrometers observe both stratospheric and tropospheric gases: C2 mimics signatures of stratospheric gases, whereas C3 mimics signatures of tropospheric gases.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference17 articles.
1. Bernardo, C. and Griffith, D. W. T.: Fourier transform spectrometer instrumental lineshape (ILS) retrieval by Fourier deconvolution, J. Quant. Spectrosc. Ra., 95, 141–150, 2005. 2. Butz, A., Guerlet, S., Hasekamp, O., Schepers, D., Galli, A., Aben, I., Frankenberg, C., Hartmann, J.-M., Tran, H., Kuze, A., Keppel-Aleks, G., Toon, G., Wunch, D., Wennberg, P., Deutscher, N., Griffith, D., Macatangay, R., Messerschmidt, J., Notholt, J., and Warneke, T.: Toward accurate CO2 and CH4 observations from GOSAT, Geophys. Res. Lett., 38, L14812, https://doi.org/10.1029/2011GL047888, 2011. 3. Chevallier, F., Deutscher, N., Ciais, P., Ciattaglia, L., Dohe, S., Fröhlich, M., Gomez-Pelaez, A. J., Hase, F., Haszpra, L., Krummel, P., Kyrö, E., Labuschagne, C., Langenfeld, R., Machida, T., Maignan, F., Matsueda, H., Morino, I., Notholt, J., Ramonet, M., Sawa, Y., Schmidt, M., Sherlock, V., Steele, P., Strong, K., Sussmann, R., Wennberg, P., Wofsy, S., Worthy, D., Wunch, D., and Zimnoch, M.: Global CO2 surface fluxes inferred from surface air-sample measurements and from surface retrievals of the CO2 total column, Geophys. Res. Lett., 38, L24810, https://doi.org/10.1029/2011GL049899, 2011. 4. Davis, S. P., Abrams, M. C., and Brault, J. W.: Fourier transform spectrometry, Academic Press, ISBN 0-12-042510-6, 2001. 5. Deutscher, N. M., Griffith, D. W. T., Bryant, G. W., Wennberg, P. O., Toon, G. C., Washenfelder, R. A., Keppel-Aleks, G., Wunch, D., Yavin, Y., Allen, N. T., Blavier, J.-F., Jiménez, R., Daube, B. C., Bright, A. V., Matross, D. M., Wofsy, S. C., and Park, S.: Total column CO2 measurements at Darwin, Australia – site description and calibration against in situ aircraft profiles, Atmos. Meas. Tech., 3, 947–958, https://doi.org/10.5194/amt-3-947-2010, 2010.
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|