Eddy covariance flux measurements of pollutant gases in urban Mexico City
Author:
Velasco E.,Pressley S.,Grivicke R.,Allwine E.,Coons T.,Foster W.,Jobson T.,Westberg H.,Ramos R.,Hernández F.,Molina L. T.,Lamb B.
Abstract
Abstract. Eddy covariance (EC) flux measurements of the atmosphere/surface exchange of gases over an urban area are a direct way to improve and evaluate emissions inventories, and, in turn, to better understand urban atmospheric chemistry and the role that cities play in regional and global chemical cycles. As part of the MCMA-2003 study, we demonstrated the feasibility of using eddy covariance techniques to measure fluxes of selected volatile organic compounds (VOCs) and CO2 from a residential district of Mexico City (Velasco et al., 2005a, b). During the MILAGRO/MCMA-2006 field campaign, a second flux measurement study was conducted in a different district of Mexico City to corroborate the 2003 flux measurements, to expand the number of species measured, and to obtain additional data for evaluation of the local emissions inventory. Fluxes of CO2 and olefins were measured by the conventional EC technique using an open path CO2 sensor and a Fast Isoprene Sensor calibrated with a propylene standard. In addition, fluxes of toluene, benzene, methanol and C2-benzenes were measured using a virtual disjunct EC method with a Proton Transfer Reaction Mass Spectrometer. The flux measurements were analyzed in terms of diurnal patterns and vehicular activity and were compared with the most recent gridded emissions inventory. In both studies, the results showed that the urban surface of Mexico City is a net source of CO2 and VOCs with significant contributions from vehicular traffic. Evaporative emissions from commercial and other anthropogenic activities were significant sources of toluene and methanol. The data show that the emissions inventory is in reasonable agreement with measured olefin and CO2 fluxes, while C2-benzenes and toluene emissions from evaporative sources are overestimated in the inventory. It appears that methanol emissions from mobile sources occur, but are not present in the mobile emissions inventory.
Publisher
Copernicus GmbH
Reference43 articles.
1. Ammann, C., Brunner, A., Spirig, C., and Neftel, A.: Technical note: Water vapour concentration and flux measurements with PTR-MS, Atmos. Chem. Phys., 6, 4643–4651, 2006. 2. Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalsky, A. S., Martin, P. H., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesela, T.: Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology, Adv. Ecol. Res., 30, 113–175, 2000. 3. Auble, D. L. and Meyers, T. P.: An open path, fast response infrared absorption gas analyzer for H2O and CO2, Bound.-Lay. Meteorol., 59, 243–256, 1992. 4. Arriaga-Colina, J. L., West, J. J., Sosa, G., Escalona, S. S., Orduñez, R. M., and Cervantes, A. D. M.: Measurements of VOCs in Mexico City (1992–2001) and evaluation of VOCs and CO in the emissions inventory, Atmos. Environ., 38, 2523–2533, 2004. 5. Barletta, B., Meinardi, S., Rowland, F. S., Chan, C.-Y., Wang, X., Zou, S., Chan, L.-Y., and Blake, D. R.: Volatile organic compounds in 43 Chinese cities, Atmos. Environ. 39, 7706–7719, 2005.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|