Contrasting impacts of humidity on the ozonolysis of monoterpenes: insights into the multi-generation chemical mechanism
-
Published:2023-09-29
Issue:18
Volume:23
Page:10809-10822
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Zhang Shan, Du LinORCID, Yang Zhaomin, Tchinda Narcisse TsonaORCID, Li Jianlong, Li KunORCID
Abstract
Abstract. Secondary organic aerosol (SOA) formed from the ozonolysis of biogenic monoterpenes is a major source of atmospheric organic aerosol. It has been previously found that relative humidity (RH) can influence the SOA formation from some monoterpenes, yet most studies only observed the increase or decrease in SOA yield without further explanations of
molecular-level mechanisms. In this study, we chose two structurally
different monoterpenes (limonene with an endocyclic double bond and an
exocyclic double bond, Δ3-carene with only an endocyclic double
bond) to investigate the effect of RH in a set of oxidation flow reactor
experiments. We find contrasting impacts of RH on the SOA formation: limonene SOA yield increases by ∼100 % as RH increases, while there is a slight decrease in Δ3-carene SOA yield. Although the complex processes in the particle phase may play a role, we primarily attribute the results to the water-influenced reactions after ozone attack on the exocyclic double bond of limonene, which leads to the increment of lower volatile organic compounds under high-RH conditions. However, as Δ3-carene only has an endocyclic double bond, it cannot undergo such reactions. This hypothesis is further supported by the SOA yield enhancement of β-caryophyllene, a sesquiterpene that also has an exocyclic double bond. These results greatly improve our understanding of how water vapor influences the ozonolysis of biogenic organic compounds and subsequent SOA formation processes.
Funder
National Natural Science Foundation of China
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference70 articles.
1. Ahmadov, R., McKeen, S. A., Robinson, A. L., Bahreini, R., Middlebrook, A.
M., de Gouw, J. A., Meagher, J., Hsie, E. Y., Edgerton, E., Shaw, S., and
Trainer, M.: A volatility basis set model for summertime secondary organic
aerosols over the eastern United States in 2006, J. Geophys. Res.-Atmos., 117, D6301, https://doi.org/10.1029/2011JD016831, 2012. 2. Aschmann, S. M., Arey, J., and Atkinson, R.: OH radical formation from the
gas-phase reactions of O3 with a series of terpenes, Atmos. Environ., 36, 4347–4355, https://doi.org/10.1016/S1352-2310(02)00355-2, 2002. 3. Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the NO3 radical with organic compounds, J. Phys. Chem. Ref. Data, 20, 459–507, https://doi.org/10.1063/1.555887, 1991. 4. Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic
volatile organic compounds: a review, Atmos. Environ., 37, 197–219,
https://doi.org/10.1016/S1352-2310(03)00391-1, 2003. 5. Bäck, J., Aalto, J., Henriksson, M., Hakola, H., He, Q., and Boy, M.:
Chemodiversity of a Scots pine stand and implications for terpene air
concentrations, Biogeosciences, 9, 689–702, https://doi.org/10.5194/bg-9-689-2012, 2012.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|