Seasonal variations in composition and sources of atmospheric ultrafine particles in urban Beijing based on near-continuous measurements

Author:

Li XiaoxiaoORCID,Chen Yijing,Li Yuyang,Cai Runlong,Li Yiran,Deng Chenjuan,Wu Jin,Yan ChaoORCID,Cheng Hairong,Liu YongchunORCID,Kulmala MarkkuORCID,Hao Jiming,Smith James N.ORCID,Jiang Jingkun

Abstract

Abstract. Understanding the composition and sources of atmospheric ultrafine particles (UFPs) is essential in evaluating their exposure risks. It requires long-term measurements with high time resolution, which are scarce to date. We performed near-continuous measurements of UFP composition during four seasons in urban Beijing using a thermal desorption chemical ionization mass spectrometer, accompanied by real-time size distribution measurements. We found that UFPs in urban Beijing are dominated by organic components, varying seasonally from 68 % to 81 %. CHO organics (i.e., molecules containing carbon, hydrogen, and oxygen) are the most abundant in summer, while sulfur-containing organics, some nitrogen-containing organics, nitrate, and chloride are the most abundant in winter. With the increase of particle diameter, the contribution of CHO organics decreases, while that of sulfur-containing and nitrogen-containing organics, nitrate, and chloride increases. Source apportionment analysis of the UFP organics indicates contributions from cooking and vehicle sources, photooxidation sources enriched in CHO organics, and aqueous/heterogeneous sources enriched in nitrogen- and sulfur-containing organics. The increased contributions of cooking, vehicle, and photooxidation components are usually accompanied by simultaneous increases in UFP number concentrations related to cooking emission, vehicle emission, and new particle formation, respectively, while the increased contribution of the aqueous/heterogeneous composition is usually accompanied by the growth of UFP mode diameters. The highest UFP number concentrations in winter are due to the strongest new particle formation, the strongest local primary particle number emissions, and the slowest condensational growth of UFPs to larger sizes. This study provides a comprehensive understanding of urban UFP composition and sources and offers valuable datasets for the evaluation of UFP exposure risks.

Funder

National Natural Science Foundation of China

National Science Foundation

U.S. Department of Energy

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference58 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3