New particle formation leads to enhanced cloud condensation nuclei concentrations on the Antarctic Peninsula

Author:

Park Jiyeon,Kang Hyojin,Gim YeontaeORCID,Jang Eunho,Park Ki-TaeORCID,Park Sangjong,Jung Chang Hoon,Ceburnis Darius,O'Dowd Colin,Yoon Young Jun

Abstract

Abstract. Few studies have investigated the impact of new particle formation (NPF) on cloud condensation nuclei (CCN) in remote Antarctica, and none has elucidated the relationship between NPF and CCN production. To address that knowledge gap, we continuously measured the number size distribution of 2.5–300 nm particles and CCN number concentrations at King Sejong Station on the Antarctic Peninsula from 1 January to 31 December 2018. Ninety-seven NPF events were detected throughout the year. Clear annual and seasonal patterns of NPF were observed: high concentration and frequency of nucleation-mode particles in summer (December–February: 53 NPF cases) and undetected nucleation-mode particles in winter (June–August: no NPF cases). We estimated the spatial scale of NPF by multiplying the time during which a distinct nucleation mode can be observed at the sampling site by the locally measured wind speed. The estimated median spatial scale of NPF around the Antarctic Peninsula was found to be approximately 155 km, indicating the large scale of NPF events. Air back-trajectory analysis revealed that 80 cases of NPF events were associated with air masses originating over the ocean, followed by sea-ice (12 cases), multiple (3 cases), and land (2 cases) regions. We present and discuss three major NPF categories: (1) marine NPF, (2) sea-ice NPF, and (3) multiple NPF. Satellite estimates for sea-surface dimethylsulfoniopropionate (DMSP; a precursor of gaseous dimethyl sulfide) data showed that the production of oceanic biogenic precursors could be a key component in marine NPF events, whereas halogen compounds released from ice-covered areas could contribute to sea-ice NPF events. Terrestrial sources (wildlife colonies, vegetation, and meltwater ponds) from Antarctica could affect aerosol production in multiple air masses. Out of 97 observed NPF events, 83 cases were characterized by the simultaneous increase in the CCN concentration by 2 %–270 % (median 44 %) in the following 1 to 36 h (median 8 h) after NPF events. Overall, Antarctic NPF events were found to be a significant source of particles with different physical characteristics and related to biogenic sources in and around the Antarctic Peninsula, which subsequently grew to cloud condensation nuclei.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3