Enrichment of calcium in sea spray aerosol: insights from bulk measurements and individual particle analysis during the R/V Xuelong cruise in the summertime in Ross Sea, Antarctica

Author:

Su BojiangORCID,Bi XinhuiORCID,Zhang ZhouORCID,Liang Yue,Song CongboORCID,Wang Tao,Hu Yaohao,Li LeiORCID,Zhou Zhen,Yan JinpeiORCID,Wang XinmingORCID,Zhang GuohuaORCID

Abstract

Abstract. Although calcium is known to be enriched in sea spray aerosols (SSAs), the factors that affect its enrichment remain ambiguous. In this study, we examine how environmental factors affect the distribution of water-soluble calcium (Ca2+) distribution in SSAs. We obtained our dataset from observations taken during the R/V Xuelong research cruise in the Ross Sea, Antarctica, from December 2017 to February 2018. Our observations showed that the enrichment of Ca2+ in aerosol samples was enhanced under specific conditions, including lower temperatures (<-3.5 ∘C), lower wind speeds (<7 m s−1), and the presence of sea ice. Our analysis of individual particle mass spectra revealed that a significant portion of calcium in SSAs was likely bound with organic matter (in the form of a single-particle type, OC-Ca, internally mixed organics with calcium). Our findings suggest that current estimations of Ca2+ enrichment based solely on water-soluble Ca2+ may be inaccurate. Our study is the first to observe a single-particle type dominated by calcium in the Antarctic atmosphere. Our findings suggest that future Antarctic atmospheric modeling should take into account the environmental behavior of individual OC-Ca particles. With the ongoing global warming and retreat of sea ice, it is essential to understand the mechanisms of calcium enrichment and the mixing state of individual particles to better comprehend the interactions between aerosols, clouds, and climate during the Antarctic summer.

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Youth Innovation Promotion Association

Guangdong Provincial Applied Science and Technology Research and Development Program

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3