Dynamics-based estimates of decline trend with fine temporal variations in China's PM2.5 emissions

Author:

Peng Zhen,Lei Lili,Tan Zhe-Min,Zhang MeigenORCID,Ding AijunORCID,Kou Xingxia

Abstract

Abstract. Timely, continuous, and dynamics-based estimates of PM2.5 emissions with a high temporal resolution can be objectively and optimally obtained by assimilating observed surface PM2.5 concentrations using flow-dependent error statistics. The annual dynamics-based estimates of PM2.5 emissions averaged over mainland China for the years 2016–2020 without biomass burning emissions are 7.66, 7.40, 7.02, 6.62, and 6.38 Tg, respectively, which are very closed to the values of the Multi-resolution Emission Inventory (MEIC). Annual PM2.5 emissions in China have consistently decreased by approximately 3 % to 5 % from 2017 to 2020. Significant PM2.5 emission reductions occurred frequently in regions with large PM2.5 emissions. COVID-19 could cause a significant reduction of PM2.5 emissions in the North China Plain and northeast of China in 2020. The magnitudes of PM2.5 emissions were greater in the winter than in the summer. PM2.5 emissions show an obvious diurnal variation that varies significantly with the season and urban population. Compared to the diurnal variations of PM2.5 emission fractions estimated based on diurnal variation profiles from the US and EU, the estimated PM2.5 emission fractions are 1.25 % larger during the evening, the morning peak is 0.57 % smaller in winter and 1.05 % larger in summer, and the evening peak is 0.83 % smaller. Improved representations of PM2.5 emissions across timescales can benefit emission inventory, regulation policy and emission trading schemes, particularly for especially for high-temporal-resolution air quality forecasting and policy response to severe haze pollution or rare human events with significant socioeconomic impacts.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference63 articles.

1. Attri, A. K., Kumar, U., and Jain, V. K.: Microclimate: formation of ozone by fireworks, Nature, 411, 1015, https://doi.org/10.1038/35082634, 2001.

2. Barker, D., Huang, X.-Y., Liu, Z., Auligné, T., Zhang, X., Rugg, S., Ajjaji, R., Bourgeois, A., Bray, J., Chen, Y., Demirtas, M., Guo, Y.-R., Henderson, T., Huang, W., Lin, H.-C., Michalakes, J., Rizvi, S., and Zhang, X.: The Weather Research and Forecasting Model's Community Variational/Ensemble Data Assimilation System: WRFDA, B. Am. Meteorol. Soc., 93, 831–843, https://doi.org/10.1175/BAMS-D-11-00167.1, 2012.

3. Cao, H., Fu, T.-M., Zhang, L., Henze, D. K., Miller, C. C., Lerot, C., Abad, G. G., De Smedt, I., Zhang, Q., van Roozendael, M., Hendrick, F., Chance, K., Li, J., Zheng, J., and Zhao, Y.: Adjoint inversion of Chinese non-methane volatile organic compound emissions using space-based observations of formaldehyde and glyoxal, Atmos. Chem. Phys., 18, 15017–15046, https://doi.org/10.5194/acp-18-15017-2018, 2018.

4. Chen, C., Dubovik, O., Henze, D. K., Chin, M., Lapyonok, T., Schuster, G. L., Ducos, F., Fuertes, D., Litvinov, P., Li, L., Lopatin, A., Hu, Q., and Torres, B.: Constraining global aerosol emissions using POLDER/PARASOL satellite remote sensing observations, Atmos. Chem. Phys., 19, 14585–14606, https://doi.org/10.5194/acp-19-14585-2019, 2019.

5. Chin, M., Rood, R. B., Lin, S. J., Muller, J. F., and Thompson, A. M.: Atmospheric sulfur cycle simulated in the global model GO-CART: Model description and global properties, J. Geophys. Res.-Atmos., 105, 24671–24687, 2000.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3