Sub-cloud rain evaporation in the North Atlantic winter trade winds derived by pairing isotopic data with a bin-resolved microphysical model

Author:

Sarkar MampiORCID,Bailey AdrianaORCID,Blossey PeterORCID,de Szoeke Simon P.ORCID,Noone DavidORCID,Quiñones Meléndez Estefanía,Leandro Mason D.ORCID,Chuang Patrick Y.ORCID

Abstract

Abstract. Sub-cloud rain evaporation in the trade wind region significantly influences the boundary layer mass and energy budgets. Parameterizing it is, however, difficult due to the sparsity of well-resolved rain observations and the challenges of sampling short-lived marine cumulus clouds. In this study, sub-cloud rain evaporation is analyzed using a steady-state, one-dimensional model that simulates changes in drop sizes, relative humidity, and rain isotopic composition. The model is initialized with relative humidity, raindrop size distributions, and water vapor isotope ratios (e.g., δDv, δ18Ov) sampled by the NOAA P3 aircraft during the Atlantic Tradewind Ocean–Atmosphere Mesoscale Interaction Campaign (ATOMIC), which was part of the larger EUREC4A (ElUcidating the RolE of Clouds–Circulation Coupling in ClimAte) field program. The modeled surface precipitation isotope ratios closely match the observations from EUREC4A ground-based and ship-based platforms, lending credibility to our model. The model suggests that 63 % of the rain mass evaporates in the sub-cloud layer across 22 P3 cases. The vertical distribution of the evaporated rain flux is top heavy for a narrow (σ) raindrop size distribution (RSD) centered over a small geometric mean diameter (Dg) at the cloud base. A top-heavy profile has a higher rain-evaporated fraction (REF) and larger changes in the rain deuterium excess (d=δD-8×δ18O) between the cloud base and the surface than a bottom-heavy profile, which results from a wider RSD with larger Dg. The modeled REF and change in d are also more strongly influenced by cloud base Dg and σ rather than the concentration of raindrops. The model results are accurate as long as the variations in the relative humidity conditions are accounted for. Relative humidity alone, however, is a poor indicator of sub-cloud rain evaporation. Overall, our analysis indicates the intricate dependence of sub-cloud rain evaporation on both thermodynamic and microphysical processes in the trade wind region.

Funder

National Center for Atmospheric Research

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference50 articles.

1. Albrecht, B., Ghate, V., Mohrmann, J., Wood, R., Zuidema, P., Bretherton, C., Schwartz, C., Eloranta, E., Glienke, S., Donaher, S., Sarkar, M., McGibbon, J., Nugent, A., Shaw, R. A., Fugal, J., Minnis, P., Palikonda, R., Lussier, L., Jensen, J., Vivekanandan, J., Ellis, S., Tsai, P., Rilling, R., Haggerty, J., Campos, T., Stell, M., Reeves, M., Beaton, S., Allison, J., Stossmeister, G., Hall, S., and Schmidt, S.: Cloud system evolution in the trades CSET following the evolution of boundary layer cloud systems with the NSF-NCAR GV, B. Am. Meteorol. Soc., 100, 93–121, https://doi.org/10.1175/BAMS-D-17-0180.1, 2019. a

2. Bailey, A., Henze, D., and Noone, D.: ATOMIC aircraft water vapor isotopic analyzer: Humidity and water vapor isotope ratios from an isotopic analyzer aboard N43 aircraft in the North Atlantic Ocean, Barbados: Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign 2020-01-17 to 2020-02-11 (NCEI Accession 0220631), NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/c5yx-7w29, 2020. a

3. Bailey, A., Aemisegger, F., Villiger, L., Los, S. A., Reverdin, G., Quiñones Meléndez, E., Acquistapace, C., Baranowski, D. B., Böck, T., Bony, S., Bordsdorff, T., Coffman, D., de Szoeke, S. P., Diekmann, C. J., Dütsch, M., Ertl, B., Galewsky, J., Henze, D., <span id="page12688"/>Makuch, P., Noone, D., Quinn, P. K., Rösch, M., Schneider, A., Schneider, M., Speich, S., Stevens, B., and Thompson, E. J.: Isotopic measurements in water vapor, precipitation, and seawater during EUREC4A, Earth Syst. Sci. Data, 15, 465–495, https://doi.org/10.5194/essd-15-465-2023, 2023. a, b, c, d, e

4. Bretherton, C. S. and Pincus, R.: Cloudiness and marine boundary layer dynamics in the ASTEX Lagrangian experiments. Part I: Synoptic setting and vertical structure, J. Atmos. Sci., 52, 2707–2723, https://doi.org/10.1175/1520-0469(1995)052&lt;2707:CAMBLD&gt;2.0.CO;2, 1995. a

5. Byers, H. R. and Hall, R. K.: A census of cumulus-cloud height versus precipitation in the vicinity of Puerto Rico during the winter and spring of 1953–1954, J. Atmos. Sci., 12, 176–178, https://doi.org/10.1175/1520-0469(1955)012&lt;0176:ACOCCH&gt;2.0.CO;2, 1955. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3