Modeling daytime and nighttime secondary organic aerosol formation via multiphase reactions of biogenic hydrocarbons

Author:

Han Sanghee,Jang MyoseonORCID

Abstract

Abstract. The daytime oxidation of biogenic hydrocarbons is attributed to both OH radicals and O3, while nighttime chemistry is dominated by the reaction with O3 and NO3 radicals. Here, daytime and nighttime patterns of secondary organic aerosol (SOA) originating from biogenic hydrocarbons were predicted under varying environmental conditions (temperature, humidity, sunlight intensity, NOx levels, and seed conditions) by using the UNIfied Partitioning Aerosol phase Reaction (UNIPAR) model, which comprises multiphase gas–particle partitioning and in-particle chemistry. The products originating from the atmospheric oxidation of three different hydrocarbons (isoprene, α-pinene, and β-caryophyllene) were predicted by using extended semi-explicit mechanisms for four major oxidants (OH, O3, NO3, and O(3P)) during day and night. The resulting oxygenated products were then classified into volatility–reactivity-based lumping species. The stoichiometric coefficients associated with lumping species were dynamically constructed under varying NOx levels, and they were applied to the UNIPAR SOA model. The predictability of the model was demonstrated by simulating chamber-generated SOA data under varying environments. For daytime SOA formation, both isoprene and α-pinene were dominated by the OH-radical-initiated oxidation showing a gradual increase in SOA yields with decreasing NOx levels. The nighttime isoprene SOA formation was processed mainly by the NO3-driven oxidation, yielding higher SOA mass than daytime at higher NOx level (isoprene / NOx < 5 ppb C ppb−1). At a given amount of ozone, the oxidation to produce the nighttime α-pinene SOA gradually transited from the NO3-initiated reaction to ozonolysis as NOx levels decreased. Nighttime α-pinene SOA yields were also significantly higher than daytime SOA yields, although the nighttime α-pinene SOA yields gradually decreased with decreasing NOx levels. β-Caryophyllene, which rapidly produced SOA with high yields, showed a relatively small variation in SOA yields from changes in environmental conditions (i.e., NOx levels, seed conditions, and sunlight intensity), and its SOA formation was mainly attributed to ozonolysis day and night. The daytime SOA formation was generally more sensitive to the aqueous reactions than the nighttime SOA because the daytime chemistry produced more highly oxidized multifunctional products. The simulation of α-pinene SOA in the presence of gasoline fuel, which can compete with α-pinene for the reaction with OH radicals in typical urban air, suggested more growth of α-pinene SOA by the enhanced ozonolysis path. We concluded that the oxidation of the biogenic hydrocarbon with O3 or NO3 radicals is a source of the production of a sizable amount of nocturnal SOA, despite the low emission at night.

Funder

National Science Foundation

National Institute of Environmental Research

National Research Foundation of Korea

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3