The impact of ENSO and NAO initial conditions and anomalies on the modeled response to Pinatubo-sized volcanic forcing

Author:

Weierbach HelenORCID,LeGrande Allegra N.,Tsigaridis KostasORCID

Abstract

Abstract. Strong, strato-volcanic eruptions are a substantial, intermittent source of natural climate variability. Initial atmospheric and oceanic conditions, such as El Niño Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO), also naturally impact climate on interannual timescales. We examine how initial conditions of ENSO and NAO contribute to the evolution of climate in the period following a Pinatubo-type eruption using a large (81-member) ensemble of model simulations in GISS model E2.1-G. Simulations are initialized from sampled conditions of ENSO and NAO using the protocol of the coordinated CMIP6 Volcanic Model Intercomparison Project (VolMIP) – where aerosols are forced with respect to time, latitude, and height. We analyze paired anomalous variations (perturbed – control) to understand changes in global and regional climate responses under positive, negative, and neutral ENSO and NAO conditions. In particular, we find that for paired anomalies there is a high probability of strong (∼1.5 ∘C) warming of northern Eurasia surface air temperature in the first winter after the volcanic eruption for negative NAO ensembles coincident with decreased lower stratospheric temperature at the poles, decreased geopotential height, and strengthening of the stratospheric polar vortex. Climate anomalies (relative to average conditions across the control period), however, show no mean warming and suggest that the strength of this response is impacted by conditions present in the selected period of the control run. Again using paired anomalies, we also observe that under both +ENSO and −ENSO ensembles sea surface temperature decreases in the first post-eruptive boreal winter coinciding with surface cooling from volcanic aerosols. Neutral ENSO ensembles, on the other hand, show variability in their response with no clear trend in post-eruptive warming or cooling. In general, paired anomalies from unperturbed simulations give insight into the evolution of the climate response to volcanic forcing; however, when compared with anomalies from climatological conditions, it is clear that paired anomalies are significantly affected by sampled initial conditions occurring at the time of the volcanic eruption.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3